MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyggrp Unicode version

Theorem cyggrp 15192
Description: A cyclic group is a group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Assertion
Ref Expression
cyggrp  |-  ( G  e. CycGrp  ->  G  e.  Grp )

Proof of Theorem cyggrp
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . 3  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2296 . . 3  |-  (.g `  G
)  =  (.g `  G
)
31, 2iscyg 15182 . 2  |-  ( G  e. CycGrp 
<->  ( G  e.  Grp  /\ 
E. x  e.  (
Base `  G ) ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  ( Base `  G
) ) )
43simplbi 446 1  |-  ( G  e. CycGrp  ->  G  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   E.wrex 2557    e. cmpt 4093   ran crn 4706   ` cfv 5271  (class class class)co 5874   ZZcz 10040   Basecbs 13164   Grpcgrp 14378  .gcmg 14382  CycGrpccyg 15180
This theorem is referenced by:  cygznlem1  16536  cygznlem2a  16537  cygznlem3  16539
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-cnv 4713  df-dm 4715  df-rn 4716  df-iota 5235  df-fv 5279  df-ov 5877  df-cyg 15181
  Copyright terms: Public domain W3C validator