MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygznlem1 Structured version   Unicode version

Theorem cygznlem1 16839
Description: Lemma for cygzn 16843. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygzn.b  |-  B  =  ( Base `  G
)
cygzn.n  |-  N  =  if ( B  e. 
Fin ,  ( # `  B
) ,  0 )
cygzn.y  |-  Y  =  (ℤ/n `  N )
cygzn.m  |-  .x.  =  (.g
`  G )
cygzn.l  |-  L  =  ( ZRHom `  Y
)
cygzn.e  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
cygzn.g  |-  ( ph  ->  G  e. CycGrp )
cygzn.x  |-  ( ph  ->  X  e.  E )
Assertion
Ref Expression
cygznlem1  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  -> 
( ( L `  K )  =  ( L `  M )  <-> 
( K  .x.  X
)  =  ( M 
.x.  X ) ) )
Distinct variable groups:    x, n, B    n, G, x    .x. , n, x    n, Y, x    n, L, x    x, N    n, X, x
Allowed substitution hints:    ph( x, n)    E( x, n)    K( x, n)    M( x, n)    N( n)

Proof of Theorem cygznlem1
StepHypRef Expression
1 cygzn.n . . . . 5  |-  N  =  if ( B  e. 
Fin ,  ( # `  B
) ,  0 )
2 hashcl 11631 . . . . . . 7  |-  ( B  e.  Fin  ->  ( # `
 B )  e. 
NN0 )
32adantl 453 . . . . . 6  |-  ( (
ph  /\  B  e.  Fin )  ->  ( # `  B )  e.  NN0 )
4 0nn0 10228 . . . . . . 7  |-  0  e.  NN0
54a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  B  e.  Fin )  ->  0  e.  NN0 )
63, 5ifclda 3758 . . . . 5  |-  ( ph  ->  if ( B  e. 
Fin ,  ( # `  B
) ,  0 )  e.  NN0 )
71, 6syl5eqel 2519 . . . 4  |-  ( ph  ->  N  e.  NN0 )
87adantr 452 . . 3  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  N  e.  NN0 )
9 simprl 733 . . 3  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  K  e.  ZZ )
10 simprr 734 . . 3  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  M  e.  ZZ )
11 cygzn.y . . . 4  |-  Y  =  (ℤ/n `  N )
12 cygzn.l . . . 4  |-  L  =  ( ZRHom `  Y
)
1311, 12zndvds 16822 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  (
( L `  K
)  =  ( L `
 M )  <->  N  ||  ( K  -  M )
) )
148, 9, 10, 13syl3anc 1184 . 2  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  -> 
( ( L `  K )  =  ( L `  M )  <-> 
N  ||  ( K  -  M ) ) )
15 cygzn.g . . . . . . 7  |-  ( ph  ->  G  e. CycGrp )
16 cyggrp 15491 . . . . . . 7  |-  ( G  e. CycGrp  ->  G  e.  Grp )
1715, 16syl 16 . . . . . 6  |-  ( ph  ->  G  e.  Grp )
18 cygzn.x . . . . . 6  |-  ( ph  ->  X  e.  E )
19 cygzn.b . . . . . . 7  |-  B  =  ( Base `  G
)
20 cygzn.m . . . . . . 7  |-  .x.  =  (.g
`  G )
21 cygzn.e . . . . . . 7  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
22 eqid 2435 . . . . . . 7  |-  ( od
`  G )  =  ( od `  G
)
2319, 20, 21, 22cyggenod2 15487 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  E )  ->  ( ( od `  G ) `  X
)  =  if ( B  e.  Fin , 
( # `  B ) ,  0 ) )
2417, 18, 23syl2anc 643 . . . . 5  |-  ( ph  ->  ( ( od `  G ) `  X
)  =  if ( B  e.  Fin , 
( # `  B ) ,  0 ) )
2524, 1syl6eqr 2485 . . . 4  |-  ( ph  ->  ( ( od `  G ) `  X
)  =  N )
2625adantr 452 . . 3  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  -> 
( ( od `  G ) `  X
)  =  N )
2726breq1d 4214 . 2  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  -> 
( ( ( od
`  G ) `  X )  ||  ( K  -  M )  <->  N 
||  ( K  -  M ) ) )
2817adantr 452 . . 3  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  G  e.  Grp )
2919, 20, 21iscyggen 15482 . . . . . 6  |-  ( X  e.  E  <->  ( X  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n  .x.  X ) )  =  B ) )
3029simplbi 447 . . . . 5  |-  ( X  e.  E  ->  X  e.  B )
3118, 30syl 16 . . . 4  |-  ( ph  ->  X  e.  B )
3231adantr 452 . . 3  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  X  e.  B )
33 eqid 2435 . . . 4  |-  ( 0g
`  G )  =  ( 0g `  G
)
3419, 22, 20, 33odcong 15179 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  ( (
( od `  G
) `  X )  ||  ( K  -  M
)  <->  ( K  .x.  X )  =  ( M  .x.  X ) ) )
3528, 32, 9, 10, 34syl112anc 1188 . 2  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  -> 
( ( ( od
`  G ) `  X )  ||  ( K  -  M )  <->  ( K  .x.  X )  =  ( M  .x.  X ) ) )
3614, 27, 353bitr2d 273 1  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  -> 
( ( L `  K )  =  ( L `  M )  <-> 
( K  .x.  X
)  =  ( M 
.x.  X ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2701   ifcif 3731   class class class wbr 4204    e. cmpt 4258   ran crn 4871   ` cfv 5446  (class class class)co 6073   Fincfn 7101   0cc0 8982    - cmin 9283   NN0cn0 10213   ZZcz 10274   #chash 11610    || cdivides 12844   Basecbs 13461   0gc0g 13715   Grpcgrp 14677  .gcmg 14681   odcod 15155  CycGrpccyg 15479   ZRHomczrh 16770  ℤ/nczn 16773
This theorem is referenced by:  cygznlem2a  16840  cygznlem3  16842
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-tpos 6471  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-omul 6721  df-er 6897  df-ec 6899  df-qs 6903  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-acn 7821  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-rp 10605  df-fz 11036  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-dvds 12845  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-0g 13719  df-imas 13726  df-divs 13727  df-mnd 14682  df-mhm 14730  df-grp 14804  df-minusg 14805  df-sbg 14806  df-mulg 14807  df-subg 14933  df-nsg 14934  df-eqg 14935  df-ghm 14996  df-od 15159  df-cmn 15406  df-abl 15407  df-cyg 15480  df-mgp 15641  df-rng 15655  df-cring 15656  df-ur 15657  df-oppr 15720  df-dvdsr 15738  df-rnghom 15811  df-subrg 15858  df-lmod 15944  df-lss 16001  df-lsp 16040  df-sra 16236  df-rgmod 16237  df-lidl 16238  df-rsp 16239  df-2idl 16295  df-cnfld 16696  df-zrh 16774  df-zn 16777
  Copyright terms: Public domain W3C validator