MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygznlem2a Structured version   Unicode version

Theorem cygznlem2a 16841
Description: Lemma for cygzn 16844. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
cygzn.b  |-  B  =  ( Base `  G
)
cygzn.n  |-  N  =  if ( B  e. 
Fin ,  ( # `  B
) ,  0 )
cygzn.y  |-  Y  =  (ℤ/n `  N )
cygzn.m  |-  .x.  =  (.g
`  G )
cygzn.l  |-  L  =  ( ZRHom `  Y
)
cygzn.e  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
cygzn.g  |-  ( ph  ->  G  e. CycGrp )
cygzn.x  |-  ( ph  ->  X  e.  E )
cygzn.f  |-  F  =  ran  ( m  e.  ZZ  |->  <. ( L `  m ) ,  ( m  .x.  X )
>. )
Assertion
Ref Expression
cygznlem2a  |-  ( ph  ->  F : ( Base `  Y ) --> B )
Distinct variable groups:    m, n, x, B    m, G, n, x    .x. , m, n, x   
m, Y, n, x   
m, L, n, x   
x, N    ph, m    n, F, x    m, X, n, x
Allowed substitution hints:    ph( x, n)    E( x, m, n)    F( m)    N( m, n)

Proof of Theorem cygznlem2a
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 cygzn.f . . . 4  |-  F  =  ran  ( m  e.  ZZ  |->  <. ( L `  m ) ,  ( m  .x.  X )
>. )
2 fvex 5735 . . . . 5  |-  ( L `
 m )  e. 
_V
32a1i 11 . . . 4  |-  ( (
ph  /\  m  e.  ZZ )  ->  ( L `
 m )  e. 
_V )
4 cygzn.g . . . . . . 7  |-  ( ph  ->  G  e. CycGrp )
5 cyggrp 15492 . . . . . . 7  |-  ( G  e. CycGrp  ->  G  e.  Grp )
64, 5syl 16 . . . . . 6  |-  ( ph  ->  G  e.  Grp )
76adantr 452 . . . . 5  |-  ( (
ph  /\  m  e.  ZZ )  ->  G  e. 
Grp )
8 simpr 448 . . . . 5  |-  ( (
ph  /\  m  e.  ZZ )  ->  m  e.  ZZ )
9 cygzn.e . . . . . . . 8  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
10 ssrab2 3421 . . . . . . . 8  |-  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }  C_  B
119, 10eqsstri 3371 . . . . . . 7  |-  E  C_  B
12 cygzn.x . . . . . . 7  |-  ( ph  ->  X  e.  E )
1311, 12sseldi 3339 . . . . . 6  |-  ( ph  ->  X  e.  B )
1413adantr 452 . . . . 5  |-  ( (
ph  /\  m  e.  ZZ )  ->  X  e.  B )
15 cygzn.b . . . . . 6  |-  B  =  ( Base `  G
)
16 cygzn.m . . . . . 6  |-  .x.  =  (.g
`  G )
1715, 16mulgcl 14900 . . . . 5  |-  ( ( G  e.  Grp  /\  m  e.  ZZ  /\  X  e.  B )  ->  (
m  .x.  X )  e.  B )
187, 8, 14, 17syl3anc 1184 . . . 4  |-  ( (
ph  /\  m  e.  ZZ )  ->  ( m 
.x.  X )  e.  B )
19 fveq2 5721 . . . 4  |-  ( m  =  k  ->  ( L `  m )  =  ( L `  k ) )
20 oveq1 6081 . . . 4  |-  ( m  =  k  ->  (
m  .x.  X )  =  ( k  .x.  X ) )
21 cygzn.n . . . . . . . 8  |-  N  =  if ( B  e. 
Fin ,  ( # `  B
) ,  0 )
22 cygzn.y . . . . . . . 8  |-  Y  =  (ℤ/n `  N )
23 cygzn.l . . . . . . . 8  |-  L  =  ( ZRHom `  Y
)
2415, 21, 22, 16, 23, 9, 4, 12cygznlem1 16840 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ZZ  /\  k  e.  ZZ ) )  -> 
( ( L `  m )  =  ( L `  k )  <-> 
( m  .x.  X
)  =  ( k 
.x.  X ) ) )
2524biimpd 199 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ZZ  /\  k  e.  ZZ ) )  -> 
( ( L `  m )  =  ( L `  k )  ->  ( m  .x.  X )  =  ( k  .x.  X ) ) )
2625exp32 589 . . . . 5  |-  ( ph  ->  ( m  e.  ZZ  ->  ( k  e.  ZZ  ->  ( ( L `  m )  =  ( L `  k )  ->  ( m  .x.  X )  =  ( k  .x.  X ) ) ) ) )
27263imp2 1168 . . . 4  |-  ( (
ph  /\  ( m  e.  ZZ  /\  k  e.  ZZ  /\  ( L `
 m )  =  ( L `  k
) ) )  -> 
( m  .x.  X
)  =  ( k 
.x.  X ) )
281, 3, 18, 19, 20, 27fliftfund 6028 . . 3  |-  ( ph  ->  Fun  F )
291, 3, 18fliftf 6030 . . 3  |-  ( ph  ->  ( Fun  F  <->  F : ran  ( m  e.  ZZ  |->  ( L `  m ) ) --> B ) )
3028, 29mpbid 202 . 2  |-  ( ph  ->  F : ran  (
m  e.  ZZ  |->  ( L `  m ) ) --> B )
31 hashcl 11632 . . . . . . . . . . 11  |-  ( B  e.  Fin  ->  ( # `
 B )  e. 
NN0 )
3231adantl 453 . . . . . . . . . 10  |-  ( (
ph  /\  B  e.  Fin )  ->  ( # `  B )  e.  NN0 )
33 0nn0 10229 . . . . . . . . . . 11  |-  0  e.  NN0
3433a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  -.  B  e.  Fin )  ->  0  e.  NN0 )
3532, 34ifclda 3759 . . . . . . . . 9  |-  ( ph  ->  if ( B  e. 
Fin ,  ( # `  B
) ,  0 )  e.  NN0 )
3621, 35syl5eqel 2520 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
37 eqid 2436 . . . . . . . . 9  |-  ( Base `  Y )  =  (
Base `  Y )
3822, 37, 23znzrhfo 16821 . . . . . . . 8  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Y
) )
3936, 38syl 16 . . . . . . 7  |-  ( ph  ->  L : ZZ -onto-> ( Base `  Y ) )
40 fof 5646 . . . . . . 7  |-  ( L : ZZ -onto-> ( Base `  Y )  ->  L : ZZ --> ( Base `  Y
) )
4139, 40syl 16 . . . . . 6  |-  ( ph  ->  L : ZZ --> ( Base `  Y ) )
4241feqmptd 5772 . . . . 5  |-  ( ph  ->  L  =  ( m  e.  ZZ  |->  ( L `
 m ) ) )
4342rneqd 5090 . . . 4  |-  ( ph  ->  ran  L  =  ran  ( m  e.  ZZ  |->  ( L `  m ) ) )
44 forn 5649 . . . . 5  |-  ( L : ZZ -onto-> ( Base `  Y )  ->  ran  L  =  ( Base `  Y
) )
4539, 44syl 16 . . . 4  |-  ( ph  ->  ran  L  =  (
Base `  Y )
)
4643, 45eqtr3d 2470 . . 3  |-  ( ph  ->  ran  ( m  e.  ZZ  |->  ( L `  m ) )  =  ( Base `  Y
) )
4746feq2d 5574 . 2  |-  ( ph  ->  ( F : ran  ( m  e.  ZZ  |->  ( L `  m ) ) --> B  <->  F :
( Base `  Y ) --> B ) )
4830, 47mpbid 202 1  |-  ( ph  ->  F : ( Base `  Y ) --> B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2702   _Vcvv 2949   ifcif 3732   <.cop 3810    e. cmpt 4259   ran crn 4872   Fun wfun 5441   -->wf 5443   -onto->wfo 5445   ` cfv 5447  (class class class)co 6074   Fincfn 7102   0cc0 8983   NN0cn0 10214   ZZcz 10275   #chash 11611   Basecbs 13462   Grpcgrp 14678  .gcmg 14682  CycGrpccyg 15480   ZRHomczrh 16771  ℤ/nczn 16774
This theorem is referenced by:  cygznlem2  16842  cygznlem3  16843
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-inf2 7589  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060  ax-pre-sup 9061  ax-addf 9062  ax-mulf 9063
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-int 4044  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-se 4535  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-isom 5456  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-1st 6342  df-2nd 6343  df-tpos 6472  df-riota 6542  df-recs 6626  df-rdg 6661  df-1o 6717  df-oadd 6721  df-omul 6722  df-er 6898  df-ec 6900  df-qs 6904  df-map 7013  df-en 7103  df-dom 7104  df-sdom 7105  df-fin 7106  df-sup 7439  df-oi 7472  df-card 7819  df-acn 7822  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-div 9671  df-nn 9994  df-2 10051  df-3 10052  df-4 10053  df-5 10054  df-6 10055  df-7 10056  df-8 10057  df-9 10058  df-10 10059  df-n0 10215  df-z 10276  df-dec 10376  df-uz 10482  df-rp 10606  df-fz 11037  df-fl 11195  df-mod 11244  df-seq 11317  df-exp 11376  df-hash 11612  df-cj 11897  df-re 11898  df-im 11899  df-sqr 12033  df-abs 12034  df-dvds 12846  df-struct 13464  df-ndx 13465  df-slot 13466  df-base 13467  df-sets 13468  df-ress 13469  df-plusg 13535  df-mulr 13536  df-starv 13537  df-sca 13538  df-vsca 13539  df-tset 13541  df-ple 13542  df-ds 13544  df-unif 13545  df-0g 13720  df-imas 13727  df-divs 13728  df-mnd 14683  df-mhm 14731  df-grp 14805  df-minusg 14806  df-sbg 14807  df-mulg 14808  df-subg 14934  df-nsg 14935  df-eqg 14936  df-ghm 14997  df-od 15160  df-cmn 15407  df-abl 15408  df-cyg 15481  df-mgp 15642  df-rng 15656  df-cring 15657  df-ur 15658  df-oppr 15721  df-dvdsr 15739  df-rnghom 15812  df-subrg 15859  df-lmod 15945  df-lss 16002  df-lsp 16041  df-sra 16237  df-rgmod 16238  df-lidl 16239  df-rsp 16240  df-2idl 16296  df-cnfld 16697  df-zrh 16775  df-zn 16778
  Copyright terms: Public domain W3C validator