Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem1 Structured version   Unicode version

Theorem dalawlem1 30730
Description: Lemma for dalaw 30745. Special case of dath2 30596, where  C is replaced by  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) ). The remaining lemmas will eliminate the conditions on the atoms imposed by dath2 30596. (Contributed by NM, 6-Oct-2012.)
Hypotheses
Ref Expression
dalawlem.l  |-  .<_  =  ( le `  K )
dalawlem.j  |-  .\/  =  ( join `  K )
dalawlem.m  |-  ./\  =  ( meet `  K )
dalawlem.a  |-  A  =  ( Atoms `  K )
dalawlem.o  |-  O  =  ( LPlanes `  K )
Assertion
Ref Expression
dalawlem1  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )

Proof of Theorem dalawlem1
StepHypRef Expression
1 simp11 988 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  K  e.  HL )
2 hllat 30223 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  K  e.  Lat )
4 simp121 1090 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  P  e.  A )
5 simp131 1093 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  S  e.  A )
6 eqid 2438 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
7 dalawlem.j . . . . . 6  |-  .\/  =  ( join `  K )
8 dalawlem.a . . . . . 6  |-  A  =  ( Atoms `  K )
96, 7, 8hlatjcl 30226 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  ->  ( P  .\/  S
)  e.  ( Base `  K ) )
101, 4, 5, 9syl3anc 1185 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  ( P  .\/  S )  e.  (
Base `  K )
)
11 simp122 1091 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  Q  e.  A )
12 simp132 1094 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  T  e.  A )
136, 7, 8hlatjcl 30226 . . . . 5  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  T  e.  A )  ->  ( Q  .\/  T
)  e.  ( Base `  K ) )
141, 11, 12, 13syl3anc 1185 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  ( Q  .\/  T )  e.  (
Base `  K )
)
15 dalawlem.m . . . . 5  |-  ./\  =  ( meet `  K )
166, 15latmcl 14482 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  ( Q  .\/  T )  e.  (
Base `  K )
)  ->  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  e.  ( Base `  K ) )
173, 10, 14, 16syl3anc 1185 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  e.  ( Base `  K ) )
181, 17jca 520 . 2  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  ( K  e.  HL  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  e.  (
Base `  K )
) )
19 simp12 989 . 2  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )
20 simp13 990 . 2  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )
21 simp2l 984 . 2  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  ( ( P  .\/  Q )  .\/  R )  e.  O )
22 simp2r 985 . 2  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  ( ( S  .\/  T )  .\/  U )  e.  O )
23 simp31 994 . 2  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) ) )
24 simp32 995 . 2  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) ) )
25 dalawlem.l . . . . 5  |-  .<_  =  ( le `  K )
266, 25, 15latmle1 14507 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  ( Q  .\/  T )  e.  (
Base `  K )
)  ->  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  S ) )
273, 10, 14, 26syl3anc 1185 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  S ) )
286, 25, 15latmle2 14508 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  ( Q  .\/  T )  e.  (
Base `  K )
)  ->  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  T ) )
293, 10, 14, 28syl3anc 1185 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  T ) )
30 simp33 996 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )
3127, 29, 303jca 1135 . 2  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  ( (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  S )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  T )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) ) )
32 dalawlem.o . . 3  |-  O  =  ( LPlanes `  K )
33 eqid 2438 . . 3  |-  ( ( P  .\/  Q ) 
./\  ( S  .\/  T ) )  =  ( ( P  .\/  Q
)  ./\  ( S  .\/  T ) )
34 eqid 2438 . . 3  |-  ( ( Q  .\/  R ) 
./\  ( T  .\/  U ) )  =  ( ( Q  .\/  R
)  ./\  ( T  .\/  U ) )
35 eqid 2438 . . 3  |-  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) )  =  ( ( R  .\/  P
)  ./\  ( U  .\/  S ) )
366, 25, 7, 8, 15, 32, 33, 34, 35dath2 30596 . 2  |-  ( ( ( ( K  e.  HL  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  e.  (
Base `  K )
)  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( (
( P  .\/  Q
)  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) )  /\  ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( ( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  S )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  T )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) ) ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) )
3718, 19, 20, 21, 22, 23, 24, 31, 36syl323anc 1215 1  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   class class class wbr 4214   ` cfv 5456  (class class class)co 6083   Basecbs 13471   lecple 13538   joincjn 14403   meetcmee 14404   Latclat 14476   Atomscatm 30123   HLchlt 30210   LPlanesclpl 30351
This theorem is referenced by:  dalaw  30745
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-undef 6545  df-riota 6551  df-poset 14405  df-plt 14417  df-lub 14433  df-glb 14434  df-join 14435  df-meet 14436  df-p0 14470  df-lat 14477  df-clat 14539  df-oposet 30036  df-ol 30038  df-oml 30039  df-covers 30126  df-ats 30127  df-atl 30158  df-cvlat 30182  df-hlat 30211  df-llines 30357  df-lplanes 30358  df-lvols 30359
  Copyright terms: Public domain W3C validator