Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem14 Structured version   Unicode version

Theorem dalawlem14 30681
Description: Lemma for dalaw 30683. Combine dalawlem10 30677 and dalawlem13 30680. (Contributed by NM, 6-Oct-2012.)
Hypotheses
Ref Expression
dalawlem.l  |-  .<_  =  ( le `  K )
dalawlem.j  |-  .\/  =  ( join `  K )
dalawlem.m  |-  ./\  =  ( meet `  K )
dalawlem.a  |-  A  =  ( Atoms `  K )
dalawlem2.o  |-  O  =  ( LPlanes `  K )
Assertion
Ref Expression
dalawlem14  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( ( P  .\/  Q ) 
.\/  R )  e.  O  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )

Proof of Theorem dalawlem14
StepHypRef Expression
1 ianor 475 . . . 4  |-  ( -.  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  <->  ( -.  (
( P  .\/  Q
)  .\/  R )  e.  O  \/  -.  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) ) )
2 dalawlem.l . . . . . . . 8  |-  .<_  =  ( le `  K )
3 dalawlem.j . . . . . . . 8  |-  .\/  =  ( join `  K )
4 dalawlem.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
5 dalawlem.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
6 dalawlem2.o . . . . . . . 8  |-  O  =  ( LPlanes `  K )
72, 3, 4, 5, 6dalawlem13 30680 . . . . . . 7  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
873expib 1156 . . . . . 6  |-  ( ( K  e.  HL  /\  -.  ( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
983exp 1152 . . . . 5  |-  ( K  e.  HL  ->  ( -.  ( ( P  .\/  Q )  .\/  R )  e.  O  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
102, 3, 4, 5dalawlem10 30677 . . . . . . 7  |-  ( ( ( K  e.  HL  /\ 
-.  ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
11103expib 1156 . . . . . 6  |-  ( ( K  e.  HL  /\  -.  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  -> 
( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) ) )
12113exp 1152 . . . . 5  |-  ( K  e.  HL  ->  ( -.  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) )  ->  ( ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U )  -> 
( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) ) ) ) )
139, 12jaod 370 . . . 4  |-  ( K  e.  HL  ->  (
( -.  ( ( P  .\/  Q ) 
.\/  R )  e.  O  \/  -.  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) ) )  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
141, 13syl5bi 209 . . 3  |-  ( K  e.  HL  ->  ( -.  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  ->  ( (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
15143imp 1147 . 2  |-  ( ( K  e.  HL  /\  -.  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
16153impib 1151 1  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( ( P  .\/  Q ) 
.\/  R )  e.  O  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   lecple 13536   joincjn 14401   meetcmee 14402   Atomscatm 30061   HLchlt 30148   LPlanesclpl 30289
This theorem is referenced by:  dalawlem15  30682  dalaw  30683
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-undef 6543  df-riota 6549  df-poset 14403  df-plt 14415  df-lub 14431  df-glb 14432  df-join 14433  df-meet 14434  df-p0 14468  df-lat 14475  df-clat 14537  df-oposet 29974  df-ol 29976  df-oml 29977  df-covers 30064  df-ats 30065  df-atl 30096  df-cvlat 30120  df-hlat 30149  df-llines 30295  df-lplanes 30296  df-psubsp 30300  df-pmap 30301  df-padd 30593
  Copyright terms: Public domain W3C validator