Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem4 Unicode version

Theorem dalawlem4 30063
Description: Lemma for dalaw 30075. Second piece of dalawlem5 30064. (Contributed by NM, 4-Oct-2012.)
Hypotheses
Ref Expression
dalawlem.l  |-  .<_  =  ( le `  K )
dalawlem.j  |-  .\/  =  ( join `  K )
dalawlem.m  |-  ./\  =  ( meet `  K )
dalawlem.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
dalawlem4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  S )  .\/  Q )  ./\  T )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) )

Proof of Theorem dalawlem4
StepHypRef Expression
1 simp11 985 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  K  e.  HL )
2 simp12 986 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q ) )
3 hllat 29553 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
41, 3syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  K  e.  Lat )
5 simp22 989 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  Q  e.  A )
6 simp32 992 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  T  e.  A )
7 eqid 2283 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
8 dalawlem.j . . . . . . 7  |-  .\/  =  ( join `  K )
9 dalawlem.a . . . . . . 7  |-  A  =  ( Atoms `  K )
107, 8, 9hlatjcl 29556 . . . . . 6  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  T  e.  A )  ->  ( Q  .\/  T
)  e.  ( Base `  K ) )
111, 5, 6, 10syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( Q  .\/  T
)  e.  ( Base `  K ) )
12 simp21 988 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  P  e.  A )
13 simp31 991 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  S  e.  A )
147, 8, 9hlatjcl 29556 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  ->  ( P  .\/  S
)  e.  ( Base `  K ) )
151, 12, 13, 14syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( P  .\/  S
)  e.  ( Base `  K ) )
16 dalawlem.m . . . . . 6  |-  ./\  =  ( meet `  K )
177, 16latmcom 14181 . . . . 5  |-  ( ( K  e.  Lat  /\  ( Q  .\/  T )  e.  ( Base `  K
)  /\  ( P  .\/  S )  e.  (
Base `  K )
)  ->  ( ( Q  .\/  T )  ./\  ( P  .\/  S ) )  =  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) ) )
184, 11, 15, 17syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( Q  .\/  T )  ./\  ( P  .\/  S ) )  =  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) ) )
198, 9hlatjcom 29557 . . . . 5  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  P  e.  A )  ->  ( Q  .\/  P
)  =  ( P 
.\/  Q ) )
201, 5, 12, 19syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( Q  .\/  P
)  =  ( P 
.\/  Q ) )
212, 18, 203brtr4d 4053 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( Q  .\/  T )  ./\  ( P  .\/  S ) )  .<_  ( Q  .\/  P ) )
22 simp13 987 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )
2318, 22eqbrtrd 4043 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( Q  .\/  T )  ./\  ( P  .\/  S ) )  .<_  ( R  .\/  U ) )
24 simp23 990 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  R  e.  A )
25 simp33 993 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  U  e.  A )
26 dalawlem.l . . . 4  |-  .<_  =  ( le `  K )
2726, 8, 16, 9dalawlem3 30062 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( Q  .\/  T )  ./\  ( P  .\/  S ) )  .<_  ( Q  .\/  P )  /\  ( ( Q 
.\/  T )  ./\  ( P  .\/  S ) )  .<_  ( R  .\/  U ) )  /\  ( Q  e.  A  /\  P  e.  A  /\  R  e.  A
)  /\  ( T  e.  A  /\  S  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  S )  .\/  Q )  ./\  T )  .<_  ( ( ( P 
.\/  R )  ./\  ( S  .\/  U ) )  .\/  ( ( R  .\/  Q ) 
./\  ( U  .\/  T ) ) ) )
281, 21, 23, 5, 12, 24, 6, 13, 25, 27syl333anc 1214 . 2  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  S )  .\/  Q )  ./\  T )  .<_  ( ( ( P 
.\/  R )  ./\  ( S  .\/  U ) )  .\/  ( ( R  .\/  Q ) 
./\  ( U  .\/  T ) ) ) )
298, 9hlatjcom 29557 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  R  e.  A )  ->  ( P  .\/  R
)  =  ( R 
.\/  P ) )
301, 12, 24, 29syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( P  .\/  R
)  =  ( R 
.\/  P ) )
318, 9hlatjcom 29557 . . . . . 6  |-  ( ( K  e.  HL  /\  S  e.  A  /\  U  e.  A )  ->  ( S  .\/  U
)  =  ( U 
.\/  S ) )
321, 13, 25, 31syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( S  .\/  U
)  =  ( U 
.\/  S ) )
3330, 32oveq12d 5876 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  R )  ./\  ( S  .\/  U ) )  =  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) )
348, 9hlatjcom 29557 . . . . . 6  |-  ( ( K  e.  HL  /\  R  e.  A  /\  Q  e.  A )  ->  ( R  .\/  Q
)  =  ( Q 
.\/  R ) )
351, 24, 5, 34syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( R  .\/  Q
)  =  ( Q 
.\/  R ) )
368, 9hlatjcom 29557 . . . . . 6  |-  ( ( K  e.  HL  /\  U  e.  A  /\  T  e.  A )  ->  ( U  .\/  T
)  =  ( T 
.\/  U ) )
371, 25, 6, 36syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( U  .\/  T
)  =  ( T 
.\/  U ) )
3835, 37oveq12d 5876 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( R  .\/  Q )  ./\  ( U  .\/  T ) )  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) ) )
3933, 38oveq12d 5876 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  R )  ./\  ( S  .\/  U ) )  .\/  ( ( R  .\/  Q ) 
./\  ( U  .\/  T ) ) )  =  ( ( ( R 
.\/  P )  ./\  ( U  .\/  S ) )  .\/  ( ( Q  .\/  R ) 
./\  ( T  .\/  U ) ) ) )
407, 8, 9hlatjcl 29556 . . . . . 6  |-  ( ( K  e.  HL  /\  R  e.  A  /\  P  e.  A )  ->  ( R  .\/  P
)  e.  ( Base `  K ) )
411, 24, 12, 40syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( R  .\/  P
)  e.  ( Base `  K ) )
427, 8, 9hlatjcl 29556 . . . . . 6  |-  ( ( K  e.  HL  /\  U  e.  A  /\  S  e.  A )  ->  ( U  .\/  S
)  e.  ( Base `  K ) )
431, 25, 13, 42syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( U  .\/  S
)  e.  ( Base `  K ) )
447, 16latmcl 14157 . . . . 5  |-  ( ( K  e.  Lat  /\  ( R  .\/  P )  e.  ( Base `  K
)  /\  ( U  .\/  S )  e.  (
Base `  K )
)  ->  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )  e.  ( Base `  K ) )
454, 41, 43, 44syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( R  .\/  P )  ./\  ( U  .\/  S ) )  e.  ( Base `  K
) )
467, 8, 9hlatjcl 29556 . . . . . 6  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  R  e.  A )  ->  ( Q  .\/  R
)  e.  ( Base `  K ) )
471, 5, 24, 46syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( Q  .\/  R
)  e.  ( Base `  K ) )
487, 8, 9hlatjcl 29556 . . . . . 6  |-  ( ( K  e.  HL  /\  T  e.  A  /\  U  e.  A )  ->  ( T  .\/  U
)  e.  ( Base `  K ) )
491, 6, 25, 48syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( T  .\/  U
)  e.  ( Base `  K ) )
507, 16latmcl 14157 . . . . 5  |-  ( ( K  e.  Lat  /\  ( Q  .\/  R )  e.  ( Base `  K
)  /\  ( T  .\/  U )  e.  (
Base `  K )
)  ->  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  e.  ( Base `  K ) )
514, 47, 49, 50syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  e.  ( Base `  K
) )
527, 8latjcom 14165 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )  e.  ( Base `  K
)  /\  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  e.  ( Base `  K ) )  -> 
( ( ( R 
.\/  P )  ./\  ( U  .\/  S ) )  .\/  ( ( Q  .\/  R ) 
./\  ( T  .\/  U ) ) )  =  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) )
534, 45, 51, 52syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( R 
.\/  P )  ./\  ( U  .\/  S ) )  .\/  ( ( Q  .\/  R ) 
./\  ( T  .\/  U ) ) )  =  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) )
5439, 53eqtrd 2315 . 2  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  R )  ./\  ( S  .\/  U ) )  .\/  ( ( R  .\/  Q ) 
./\  ( U  .\/  T ) ) )  =  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) )
5528, 54breqtrd 4047 1  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  S )  .\/  Q )  ./\  T )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   meetcmee 14079   Latclat 14151   Atomscatm 29453   HLchlt 29540
This theorem is referenced by:  dalawlem5  30064
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-psubsp 29692  df-pmap 29693  df-padd 29985
  Copyright terms: Public domain W3C validator