Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem5 Unicode version

Theorem dalawlem5 30064
Description: Lemma for dalaw 30075. Special case to eliminate the requirement  -.  ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q ) in dalawlem1 30060. (Contributed by NM, 4-Oct-2012.)
Hypotheses
Ref Expression
dalawlem.l  |-  .<_  =  ( le `  K )
dalawlem.j  |-  .\/  =  ( join `  K )
dalawlem.m  |-  ./\  =  ( meet `  K )
dalawlem.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
dalawlem5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) )

Proof of Theorem dalawlem5
StepHypRef Expression
1 eqid 2283 . 2  |-  ( Base `  K )  =  (
Base `  K )
2 dalawlem.l . 2  |-  .<_  =  ( le `  K )
3 simp11 985 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  K  e.  HL )
4 hllat 29553 . . 3  |-  ( K  e.  HL  ->  K  e.  Lat )
53, 4syl 15 . 2  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  K  e.  Lat )
6 simp21 988 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  P  e.  A )
7 simp22 989 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  Q  e.  A )
8 dalawlem.j . . . . 5  |-  .\/  =  ( join `  K )
9 dalawlem.a . . . . 5  |-  A  =  ( Atoms `  K )
101, 8, 9hlatjcl 29556 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
113, 6, 7, 10syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( P  .\/  Q
)  e.  ( Base `  K ) )
12 simp31 991 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  S  e.  A )
13 simp32 992 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  T  e.  A )
141, 8, 9hlatjcl 29556 . . . 4  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
153, 12, 13, 14syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( S  .\/  T
)  e.  ( Base `  K ) )
16 dalawlem.m . . . 4  |-  ./\  =  ( meet `  K )
171, 16latmcl 14157 . . 3  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  ( S  .\/  T )  e.  (
Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  e.  ( Base `  K ) )
185, 11, 15, 17syl3anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  e.  ( Base `  K
) )
191, 9atbase 29479 . . . . . 6  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
2013, 19syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  T  e.  ( Base `  K ) )
211, 8latjcl 14156 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  T  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  .\/  T )  e.  ( Base `  K ) )
225, 11, 20, 21syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  .\/  T )  e.  ( Base `  K
) )
231, 9atbase 29479 . . . . 5  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
2412, 23syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  S  e.  ( Base `  K ) )
251, 16latmcl 14157 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  Q )  .\/  T )  e.  ( Base `  K
)  /\  S  e.  ( Base `  K )
)  ->  ( (
( P  .\/  Q
)  .\/  T )  ./\  S )  e.  (
Base `  K )
)
265, 22, 24, 25syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  Q )  .\/  T )  ./\  S )  e.  ( Base `  K
) )
271, 8latjcl 14156 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  S  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  .\/  S )  e.  ( Base `  K ) )
285, 11, 24, 27syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  .\/  S )  e.  ( Base `  K
) )
291, 16latmcl 14157 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  Q )  .\/  S )  e.  ( Base `  K
)  /\  T  e.  ( Base `  K )
)  ->  ( (
( P  .\/  Q
)  .\/  S )  ./\  T )  e.  (
Base `  K )
)
305, 28, 20, 29syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  Q )  .\/  S )  ./\  T )  e.  ( Base `  K
) )
311, 8latjcl 14156 . . 3  |-  ( ( K  e.  Lat  /\  ( ( ( P 
.\/  Q )  .\/  T )  ./\  S )  e.  ( Base `  K
)  /\  ( (
( P  .\/  Q
)  .\/  S )  ./\  T )  e.  (
Base `  K )
)  ->  ( (
( ( P  .\/  Q )  .\/  T ) 
./\  S )  .\/  ( ( ( P 
.\/  Q )  .\/  S )  ./\  T )
)  e.  ( Base `  K ) )
325, 26, 30, 31syl3anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( ( P  .\/  Q ) 
.\/  T )  ./\  S )  .\/  ( ( ( P  .\/  Q
)  .\/  S )  ./\  T ) )  e.  ( Base `  K
) )
33 simp23 990 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  R  e.  A )
341, 8, 9hlatjcl 29556 . . . . 5  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  R  e.  A )  ->  ( Q  .\/  R
)  e.  ( Base `  K ) )
353, 7, 33, 34syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( Q  .\/  R
)  e.  ( Base `  K ) )
36 simp33 993 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  U  e.  A )
371, 8, 9hlatjcl 29556 . . . . 5  |-  ( ( K  e.  HL  /\  T  e.  A  /\  U  e.  A )  ->  ( T  .\/  U
)  e.  ( Base `  K ) )
383, 13, 36, 37syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( T  .\/  U
)  e.  ( Base `  K ) )
391, 16latmcl 14157 . . . 4  |-  ( ( K  e.  Lat  /\  ( Q  .\/  R )  e.  ( Base `  K
)  /\  ( T  .\/  U )  e.  (
Base `  K )
)  ->  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  e.  ( Base `  K ) )
405, 35, 38, 39syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  e.  ( Base `  K
) )
411, 8, 9hlatjcl 29556 . . . . 5  |-  ( ( K  e.  HL  /\  R  e.  A  /\  P  e.  A )  ->  ( R  .\/  P
)  e.  ( Base `  K ) )
423, 33, 6, 41syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( R  .\/  P
)  e.  ( Base `  K ) )
431, 8, 9hlatjcl 29556 . . . . 5  |-  ( ( K  e.  HL  /\  U  e.  A  /\  S  e.  A )  ->  ( U  .\/  S
)  e.  ( Base `  K ) )
443, 36, 12, 43syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( U  .\/  S
)  e.  ( Base `  K ) )
451, 16latmcl 14157 . . . 4  |-  ( ( K  e.  Lat  /\  ( R  .\/  P )  e.  ( Base `  K
)  /\  ( U  .\/  S )  e.  (
Base `  K )
)  ->  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )  e.  ( Base `  K ) )
465, 42, 44, 45syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( R  .\/  P )  ./\  ( U  .\/  S ) )  e.  ( Base `  K
) )
471, 8latjcl 14156 . . 3  |-  ( ( K  e.  Lat  /\  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  e.  ( Base `  K
)  /\  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )  e.  ( Base `  K ) )  -> 
( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) )  e.  ( Base `  K
) )
485, 40, 46, 47syl3anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) )  e.  ( Base `  K
) )
492, 8, 16, 9dalawlem2 30061 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( ( P  .\/  Q ) 
.\/  T )  ./\  S )  .\/  ( ( ( P  .\/  Q
)  .\/  S )  ./\  T ) ) )
503, 6, 7, 12, 13, 49syl122anc 1191 . 2  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( ( P  .\/  Q ) 
.\/  T )  ./\  S )  .\/  ( ( ( P  .\/  Q
)  .\/  S )  ./\  T ) ) )
518, 9hlatjcom 29557 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  =  ( Q 
.\/  P ) )
523, 6, 7, 51syl3anc 1182 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( P  .\/  Q
)  =  ( Q 
.\/  P ) )
5352oveq1d 5873 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  .\/  T )  =  ( ( Q 
.\/  P )  .\/  T ) )
548, 9hlatj32 29561 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  P  e.  A  /\  T  e.  A
) )  ->  (
( Q  .\/  P
)  .\/  T )  =  ( ( Q 
.\/  T )  .\/  P ) )
553, 7, 6, 13, 54syl13anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( Q  .\/  P )  .\/  T )  =  ( ( Q 
.\/  T )  .\/  P ) )
5653, 55eqtrd 2315 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  .\/  T )  =  ( ( Q 
.\/  T )  .\/  P ) )
5756oveq1d 5873 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  Q )  .\/  T )  ./\  S )  =  ( ( ( Q  .\/  T ) 
.\/  P )  ./\  S ) )
582, 8, 16, 9dalawlem3 30062 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( Q 
.\/  T )  .\/  P )  ./\  S )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) )
5957, 58eqbrtrd 4043 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  Q )  .\/  T )  ./\  S )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) )
608, 9hlatj32 29561 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  S  e.  A
) )  ->  (
( P  .\/  Q
)  .\/  S )  =  ( ( P 
.\/  S )  .\/  Q ) )
613, 6, 7, 12, 60syl13anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  .\/  S )  =  ( ( P 
.\/  S )  .\/  Q ) )
6261oveq1d 5873 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  Q )  .\/  S )  ./\  T )  =  ( ( ( P  .\/  S ) 
.\/  Q )  ./\  T ) )
632, 8, 16, 9dalawlem4 30063 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  S )  .\/  Q )  ./\  T )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) )
6462, 63eqbrtrd 4043 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  Q )  .\/  S )  ./\  T )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) )
651, 2, 8latjle12 14168 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( ( ( P  .\/  Q ) 
.\/  T )  ./\  S )  e.  ( Base `  K )  /\  (
( ( P  .\/  Q )  .\/  S ) 
./\  T )  e.  ( Base `  K
)  /\  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) )  e.  ( Base `  K
) ) )  -> 
( ( ( ( ( P  .\/  Q
)  .\/  T )  ./\  S )  .<_  ( ( ( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) )  /\  ( ( ( P  .\/  Q ) 
.\/  S )  ./\  T )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )  <->  ( ( ( ( P  .\/  Q
)  .\/  T )  ./\  S )  .\/  (
( ( P  .\/  Q )  .\/  S ) 
./\  T ) ) 
.<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
665, 26, 30, 48, 65syl13anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( ( ( P  .\/  Q
)  .\/  T )  ./\  S )  .<_  ( ( ( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) )  /\  ( ( ( P  .\/  Q ) 
.\/  S )  ./\  T )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )  <->  ( ( ( ( P  .\/  Q
)  .\/  T )  ./\  S )  .\/  (
( ( P  .\/  Q )  .\/  S ) 
./\  T ) ) 
.<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
6759, 64, 66mpbi2and 887 . 2  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( ( P  .\/  Q ) 
.\/  T )  ./\  S )  .\/  ( ( ( P  .\/  Q
)  .\/  S )  ./\  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) )
681, 2, 5, 18, 32, 48, 50, 67lattrd 14164 1  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   meetcmee 14079   Latclat 14151   Atomscatm 29453   HLchlt 29540
This theorem is referenced by:  dalawlem10  30069
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-psubsp 29692  df-pmap 29693  df-padd 29985
  Copyright terms: Public domain W3C validator