Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem7 Structured version   Unicode version

Theorem dalawlem7 30675
Description: Lemma for dalaw 30684. Second piece of dalawlem8 30676. (Contributed by NM, 6-Oct-2012.)
Hypotheses
Ref Expression
dalawlem.l  |-  .<_  =  ( le `  K )
dalawlem.j  |-  .\/  =  ( join `  K )
dalawlem.m  |-  ./\  =  ( meet `  K )
dalawlem.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
dalawlem7  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  Q )  .\/  S )  ./\  T )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) )

Proof of Theorem dalawlem7
StepHypRef Expression
1 eqid 2437 . 2  |-  ( Base `  K )  =  (
Base `  K )
2 dalawlem.l . 2  |-  .<_  =  ( le `  K )
3 simp11 988 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  K  e.  HL )
4 hllat 30162 . . 3  |-  ( K  e.  HL  ->  K  e.  Lat )
53, 4syl 16 . 2  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  K  e.  Lat )
6 simp21 991 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  P  e.  A )
7 simp22 992 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  Q  e.  A )
8 dalawlem.j . . . . . 6  |-  .\/  =  ( join `  K )
9 dalawlem.a . . . . . 6  |-  A  =  ( Atoms `  K )
101, 8, 9hlatjcl 30165 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
113, 6, 7, 10syl3anc 1185 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( P  .\/  Q
)  e.  ( Base `  K ) )
12 simp31 994 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  S  e.  A )
131, 9atbase 30088 . . . . 5  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
1412, 13syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  S  e.  ( Base `  K ) )
151, 8latjcl 14480 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  S  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  .\/  S )  e.  ( Base `  K ) )
165, 11, 14, 15syl3anc 1185 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  .\/  S )  e.  ( Base `  K
) )
17 simp32 995 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  T  e.  A )
181, 9atbase 30088 . . . 4  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
1917, 18syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  T  e.  ( Base `  K ) )
20 dalawlem.m . . . 4  |-  ./\  =  ( meet `  K )
211, 20latmcl 14481 . . 3  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  Q )  .\/  S )  e.  ( Base `  K
)  /\  T  e.  ( Base `  K )
)  ->  ( (
( P  .\/  Q
)  .\/  S )  ./\  T )  e.  (
Base `  K )
)
225, 16, 19, 21syl3anc 1185 . 2  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  Q )  .\/  S )  ./\  T )  e.  ( Base `  K
) )
23 simp23 993 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  R  e.  A )
241, 8, 9hlatjcl 30165 . . . 4  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  R  e.  A )  ->  ( Q  .\/  R
)  e.  ( Base `  K ) )
253, 7, 23, 24syl3anc 1185 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( Q  .\/  R
)  e.  ( Base `  K ) )
26 simp33 996 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  U  e.  A )
271, 8, 9hlatjcl 30165 . . . 4  |-  ( ( K  e.  HL  /\  T  e.  A  /\  U  e.  A )  ->  ( T  .\/  U
)  e.  ( Base `  K ) )
283, 17, 26, 27syl3anc 1185 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( T  .\/  U
)  e.  ( Base `  K ) )
291, 20latmcl 14481 . . 3  |-  ( ( K  e.  Lat  /\  ( Q  .\/  R )  e.  ( Base `  K
)  /\  ( T  .\/  U )  e.  (
Base `  K )
)  ->  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  e.  ( Base `  K ) )
305, 25, 28, 29syl3anc 1185 . 2  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  e.  ( Base `  K
) )
311, 8, 9hlatjcl 30165 . . . . 5  |-  ( ( K  e.  HL  /\  R  e.  A  /\  P  e.  A )  ->  ( R  .\/  P
)  e.  ( Base `  K ) )
323, 23, 6, 31syl3anc 1185 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( R  .\/  P
)  e.  ( Base `  K ) )
331, 8, 9hlatjcl 30165 . . . . 5  |-  ( ( K  e.  HL  /\  U  e.  A  /\  S  e.  A )  ->  ( U  .\/  S
)  e.  ( Base `  K ) )
343, 26, 12, 33syl3anc 1185 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( U  .\/  S
)  e.  ( Base `  K ) )
351, 20latmcl 14481 . . . 4  |-  ( ( K  e.  Lat  /\  ( R  .\/  P )  e.  ( Base `  K
)  /\  ( U  .\/  S )  e.  (
Base `  K )
)  ->  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )  e.  ( Base `  K ) )
365, 32, 34, 35syl3anc 1185 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( R  .\/  P )  ./\  ( U  .\/  S ) )  e.  ( Base `  K
) )
371, 8latjcl 14480 . . 3  |-  ( ( K  e.  Lat  /\  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  e.  ( Base `  K
)  /\  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )  e.  ( Base `  K ) )  -> 
( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) )  e.  ( Base `  K
) )
385, 30, 36, 37syl3anc 1185 . 2  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) )  e.  ( Base `  K
) )
39 hlol 30160 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OL )
403, 39syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  K  e.  OL )
411, 8, 9hlatjcl 30165 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  ->  ( P  .\/  S
)  e.  ( Base `  K ) )
423, 6, 12, 41syl3anc 1185 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( P  .\/  S
)  e.  ( Base `  K ) )
431, 9atbase 30088 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
447, 43syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  Q  e.  ( Base `  K ) )
451, 8latjcl 14480 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  Q  e.  ( Base `  K )
)  ->  ( ( P  .\/  S )  .\/  Q )  e.  ( Base `  K ) )
465, 42, 44, 45syl3anc 1185 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  S )  .\/  Q )  e.  ( Base `  K
) )
471, 8, 9hlatjcl 30165 . . . . . 6  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  T  e.  A )  ->  ( Q  .\/  T
)  e.  ( Base `  K ) )
483, 7, 17, 47syl3anc 1185 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( Q  .\/  T
)  e.  ( Base `  K ) )
491, 20latmassOLD 30028 . . . . 5  |-  ( ( K  e.  OL  /\  ( ( ( P 
.\/  S )  .\/  Q )  e.  ( Base `  K )  /\  ( Q  .\/  T )  e.  ( Base `  K
)  /\  T  e.  ( Base `  K )
) )  ->  (
( ( ( P 
.\/  S )  .\/  Q )  ./\  ( Q  .\/  T ) )  ./\  T )  =  ( ( ( P  .\/  S
)  .\/  Q )  ./\  ( ( Q  .\/  T )  ./\  T )
) )
5040, 46, 48, 19, 49syl13anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( ( P  .\/  S ) 
.\/  Q )  ./\  ( Q  .\/  T ) )  ./\  T )  =  ( ( ( P  .\/  S ) 
.\/  Q )  ./\  ( ( Q  .\/  T )  ./\  T )
) )
518, 9hlatj32 30170 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  S  e.  A  /\  Q  e.  A
) )  ->  (
( P  .\/  S
)  .\/  Q )  =  ( ( P 
.\/  Q )  .\/  S ) )
523, 6, 12, 7, 51syl13anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  S )  .\/  Q )  =  ( ( P 
.\/  Q )  .\/  S ) )
532, 8, 9hlatlej2 30174 . . . . . . 7  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  T  e.  A )  ->  T  .<_  ( Q  .\/  T ) )
543, 7, 17, 53syl3anc 1185 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  T  .<_  ( Q  .\/  T ) )
551, 2, 20latleeqm2 14510 . . . . . . 7  |-  ( ( K  e.  Lat  /\  T  e.  ( Base `  K )  /\  ( Q  .\/  T )  e.  ( Base `  K
) )  ->  ( T  .<_  ( Q  .\/  T )  <->  ( ( Q 
.\/  T )  ./\  T )  =  T ) )
565, 19, 48, 55syl3anc 1185 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( T  .<_  ( Q 
.\/  T )  <->  ( ( Q  .\/  T )  ./\  T )  =  T ) )
5754, 56mpbid 203 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( Q  .\/  T )  ./\  T )  =  T )
5852, 57oveq12d 6100 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  S )  .\/  Q )  ./\  ( ( Q  .\/  T )  ./\  T ) )  =  ( ( ( P  .\/  Q )  .\/  S ) 
./\  T ) )
5950, 58eqtr2d 2470 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  Q )  .\/  S )  ./\  T )  =  ( ( ( ( P  .\/  S
)  .\/  Q )  ./\  ( Q  .\/  T
) )  ./\  T
) )
60 simp12 989 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R ) )
611, 20latmcl 14481 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  ( Q  .\/  T )  e.  (
Base `  K )
)  ->  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  e.  ( Base `  K ) )
625, 42, 48, 61syl3anc 1185 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  e.  ( Base `  K
) )
631, 2, 8latjlej1 14495 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  e.  ( Base `  K )  /\  ( Q  .\/  R )  e.  ( Base `  K
)  /\  Q  e.  ( Base `  K )
) )  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  ->  ( ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .\/  Q
)  .<_  ( ( Q 
.\/  R )  .\/  Q ) ) )
645, 62, 25, 44, 63syl13anc 1187 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .\/  Q )  .<_  ( ( Q  .\/  R )  .\/  Q ) ) )
6560, 64mpd 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .\/  Q ) 
.<_  ( ( Q  .\/  R )  .\/  Q ) )
662, 8, 9hlatlej1 30173 . . . . . . 7  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  T  e.  A )  ->  Q  .<_  ( Q  .\/  T ) )
673, 7, 17, 66syl3anc 1185 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  Q  .<_  ( Q  .\/  T ) )
681, 2, 8, 20, 9atmod4i1 30664 . . . . . 6  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  ( P  .\/  S
)  e.  ( Base `  K )  /\  ( Q  .\/  T )  e.  ( Base `  K
) )  /\  Q  .<_  ( Q  .\/  T
) )  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .\/  Q )  =  ( ( ( P  .\/  S
)  .\/  Q )  ./\  ( Q  .\/  T
) ) )
693, 7, 42, 48, 67, 68syl131anc 1198 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .\/  Q )  =  ( ( ( P  .\/  S ) 
.\/  Q )  ./\  ( Q  .\/  T ) ) )
708, 9hlatj32 30170 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  Q  e.  A
) )  ->  (
( Q  .\/  R
)  .\/  Q )  =  ( ( Q 
.\/  Q )  .\/  R ) )
713, 7, 23, 7, 70syl13anc 1187 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( Q  .\/  R )  .\/  Q )  =  ( ( Q 
.\/  Q )  .\/  R ) )
721, 8latjidm 14504 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K ) )  -> 
( Q  .\/  Q
)  =  Q )
735, 44, 72syl2anc 644 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( Q  .\/  Q
)  =  Q )
7473oveq1d 6097 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( Q  .\/  Q )  .\/  R )  =  ( Q  .\/  R ) )
7571, 74eqtrd 2469 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( Q  .\/  R )  .\/  Q )  =  ( Q  .\/  R ) )
7665, 69, 753brtr3d 4242 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  S )  .\/  Q )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R ) )
772, 8, 9hlatlej1 30173 . . . . 5  |-  ( ( K  e.  HL  /\  T  e.  A  /\  U  e.  A )  ->  T  .<_  ( T  .\/  U ) )
783, 17, 26, 77syl3anc 1185 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  ->  T  .<_  ( T  .\/  U ) )
791, 20latmcl 14481 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  S )  .\/  Q )  e.  ( Base `  K
)  /\  ( Q  .\/  T )  e.  (
Base `  K )
)  ->  ( (
( P  .\/  S
)  .\/  Q )  ./\  ( Q  .\/  T
) )  e.  (
Base `  K )
)
805, 46, 48, 79syl3anc 1185 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  S )  .\/  Q )  ./\  ( Q  .\/  T ) )  e.  ( Base `  K
) )
811, 2, 20latmlem12 14513 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( ( ( P  .\/  S ) 
.\/  Q )  ./\  ( Q  .\/  T ) )  e.  ( Base `  K )  /\  ( Q  .\/  R )  e.  ( Base `  K
) )  /\  ( T  e.  ( Base `  K )  /\  ( T  .\/  U )  e.  ( Base `  K
) ) )  -> 
( ( ( ( ( P  .\/  S
)  .\/  Q )  ./\  ( Q  .\/  T
) )  .<_  ( Q 
.\/  R )  /\  T  .<_  ( T  .\/  U ) )  ->  (
( ( ( P 
.\/  S )  .\/  Q )  ./\  ( Q  .\/  T ) )  ./\  T )  .<_  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) ) ) )
825, 80, 25, 19, 28, 81syl122anc 1194 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( ( ( P  .\/  S
)  .\/  Q )  ./\  ( Q  .\/  T
) )  .<_  ( Q 
.\/  R )  /\  T  .<_  ( T  .\/  U ) )  ->  (
( ( ( P 
.\/  S )  .\/  Q )  ./\  ( Q  .\/  T ) )  ./\  T )  .<_  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) ) ) )
8376, 78, 82mp2and 662 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( ( P  .\/  S ) 
.\/  Q )  ./\  ( Q  .\/  T ) )  ./\  T )  .<_  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) ) )
8459, 83eqbrtrd 4233 . 2  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  Q )  .\/  S )  ./\  T )  .<_  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) ) )
851, 2, 8latlej1 14490 . . 3  |-  ( ( K  e.  Lat  /\  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  e.  ( Base `  K
)  /\  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )  e.  ( Base `  K ) )  -> 
( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) )
865, 30, 36, 85syl3anc 1185 . 2  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) )
871, 2, 5, 22, 30, 38, 84, 86lattrd 14488 1  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  Q )  .\/  S )  ./\  T )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   class class class wbr 4213   ` cfv 5455  (class class class)co 6082   Basecbs 13470   lecple 13537   joincjn 14402   meetcmee 14403   Latclat 14475   OLcol 29973   Atomscatm 30062   HLchlt 30149
This theorem is referenced by:  dalawlem8  30676
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-iun 4096  df-iin 4097  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-undef 6544  df-riota 6550  df-poset 14404  df-plt 14416  df-lub 14432  df-glb 14433  df-join 14434  df-meet 14435  df-p0 14469  df-lat 14476  df-clat 14538  df-oposet 29975  df-ol 29977  df-oml 29978  df-covers 30065  df-ats 30066  df-atl 30097  df-cvlat 30121  df-hlat 30150  df-psubsp 30301  df-pmap 30302  df-padd 30594
  Copyright terms: Public domain W3C validator