Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem-cly Unicode version

Theorem dalem-cly 29860
Description: Lemma for dalem9 29861. Center of perspectivity  C is not in plane  Y (when  Y and  Z are different planes). (Contributed by NM, 13-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalemc.l  |-  .<_  =  ( le `  K )
dalemc.j  |-  .\/  =  ( join `  K )
dalemc.a  |-  A  =  ( Atoms `  K )
dalem-cly.o  |-  O  =  ( LPlanes `  K )
dalem-cly.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem-cly.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
Assertion
Ref Expression
dalem-cly  |-  ( (
ph  /\  Y  =/=  Z )  ->  -.  C  .<_  Y )

Proof of Theorem dalem-cly
StepHypRef Expression
1 dalema.ph . . . . . . 7  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
21dalemkelat 29813 . . . . . 6  |-  ( ph  ->  K  e.  Lat )
3 dalemc.a . . . . . . 7  |-  A  =  ( Atoms `  K )
41, 3dalemceb 29827 . . . . . 6  |-  ( ph  ->  C  e.  ( Base `  K ) )
5 dalem-cly.o . . . . . . 7  |-  O  =  ( LPlanes `  K )
61, 5dalemyeb 29838 . . . . . 6  |-  ( ph  ->  Y  e.  ( Base `  K ) )
7 eqid 2283 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
8 dalemc.l . . . . . . 7  |-  .<_  =  ( le `  K )
9 dalemc.j . . . . . . 7  |-  .\/  =  ( join `  K )
107, 8, 9latleeqj1 14169 . . . . . 6  |-  ( ( K  e.  Lat  /\  C  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( C  .<_  Y  <->  ( C  .\/  Y )  =  Y ) )
112, 4, 6, 10syl3anc 1182 . . . . 5  |-  ( ph  ->  ( C  .<_  Y  <->  ( C  .\/  Y )  =  Y ) )
121dalemclpjs 29823 . . . . . . . . . . . . 13  |-  ( ph  ->  C  .<_  ( P  .\/  S ) )
131dalemkehl 29812 . . . . . . . . . . . . . 14  |-  ( ph  ->  K  e.  HL )
14 dalem-cly.y . . . . . . . . . . . . . . 15  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
151, 8, 9, 3, 5, 14dalemcea 29849 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  e.  A )
161dalemsea 29818 . . . . . . . . . . . . . 14  |-  ( ph  ->  S  e.  A )
171dalempea 29815 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  A )
181dalemqea 29816 . . . . . . . . . . . . . . 15  |-  ( ph  ->  Q  e.  A )
191dalem-clpjq 29826 . . . . . . . . . . . . . . 15  |-  ( ph  ->  -.  C  .<_  ( P 
.\/  Q ) )
208, 9, 3atnlej1 29568 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( C  e.  A  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  C  .<_  ( P  .\/  Q
) )  ->  C  =/=  P )
2113, 15, 17, 18, 19, 20syl131anc 1195 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  =/=  P )
228, 9, 3hlatexch1 29584 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( C  e.  A  /\  S  e.  A  /\  P  e.  A
)  /\  C  =/=  P )  ->  ( C  .<_  ( P  .\/  S
)  ->  S  .<_  ( P  .\/  C ) ) )
2313, 15, 16, 17, 21, 22syl131anc 1195 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C  .<_  ( P 
.\/  S )  ->  S  .<_  ( P  .\/  C ) ) )
2412, 23mpd 14 . . . . . . . . . . . 12  |-  ( ph  ->  S  .<_  ( P  .\/  C ) )
259, 3hlatjcom 29557 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  C  e.  A  /\  P  e.  A )  ->  ( C  .\/  P
)  =  ( P 
.\/  C ) )
2613, 15, 17, 25syl3anc 1182 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  .\/  P
)  =  ( P 
.\/  C ) )
2724, 26breqtrrd 4049 . . . . . . . . . . 11  |-  ( ph  ->  S  .<_  ( C  .\/  P ) )
281dalemclqjt 29824 . . . . . . . . . . . . 13  |-  ( ph  ->  C  .<_  ( Q  .\/  T ) )
291dalemtea 29819 . . . . . . . . . . . . . 14  |-  ( ph  ->  T  e.  A )
301dalemrea 29817 . . . . . . . . . . . . . . 15  |-  ( ph  ->  R  e.  A )
31 simp312 1103 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  -.  C  .<_  ( Q  .\/  R ) )
321, 31sylbi 187 . . . . . . . . . . . . . . 15  |-  ( ph  ->  -.  C  .<_  ( Q 
.\/  R ) )
338, 9, 3atnlej1 29568 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( C  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  -.  C  .<_  ( Q  .\/  R
) )  ->  C  =/=  Q )
3413, 15, 18, 30, 32, 33syl131anc 1195 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  =/=  Q )
358, 9, 3hlatexch1 29584 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( C  e.  A  /\  T  e.  A  /\  Q  e.  A
)  /\  C  =/=  Q )  ->  ( C  .<_  ( Q  .\/  T
)  ->  T  .<_  ( Q  .\/  C ) ) )
3613, 15, 29, 18, 34, 35syl131anc 1195 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C  .<_  ( Q 
.\/  T )  ->  T  .<_  ( Q  .\/  C ) ) )
3728, 36mpd 14 . . . . . . . . . . . 12  |-  ( ph  ->  T  .<_  ( Q  .\/  C ) )
389, 3hlatjcom 29557 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  C  e.  A  /\  Q  e.  A )  ->  ( C  .\/  Q
)  =  ( Q 
.\/  C ) )
3913, 15, 18, 38syl3anc 1182 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  .\/  Q
)  =  ( Q 
.\/  C ) )
4037, 39breqtrrd 4049 . . . . . . . . . . 11  |-  ( ph  ->  T  .<_  ( C  .\/  Q ) )
411, 3dalemseb 29831 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  ( Base `  K ) )
427, 9, 3hlatjcl 29556 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  C  e.  A  /\  P  e.  A )  ->  ( C  .\/  P
)  e.  ( Base `  K ) )
4313, 15, 17, 42syl3anc 1182 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  .\/  P
)  e.  ( Base `  K ) )
441, 3dalemteb 29832 . . . . . . . . . . . 12  |-  ( ph  ->  T  e.  ( Base `  K ) )
457, 9, 3hlatjcl 29556 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  C  e.  A  /\  Q  e.  A )  ->  ( C  .\/  Q
)  e.  ( Base `  K ) )
4613, 15, 18, 45syl3anc 1182 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  .\/  Q
)  e.  ( Base `  K ) )
477, 8, 9latjlej12 14173 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  ( C  .\/  P )  e.  ( Base `  K
) )  /\  ( T  e.  ( Base `  K )  /\  ( C  .\/  Q )  e.  ( Base `  K
) ) )  -> 
( ( S  .<_  ( C  .\/  P )  /\  T  .<_  ( C 
.\/  Q ) )  ->  ( S  .\/  T )  .<_  ( ( C  .\/  P )  .\/  ( C  .\/  Q ) ) ) )
482, 41, 43, 44, 46, 47syl122anc 1191 . . . . . . . . . . 11  |-  ( ph  ->  ( ( S  .<_  ( C  .\/  P )  /\  T  .<_  ( C 
.\/  Q ) )  ->  ( S  .\/  T )  .<_  ( ( C  .\/  P )  .\/  ( C  .\/  Q ) ) ) )
4927, 40, 48mp2and 660 . . . . . . . . . 10  |-  ( ph  ->  ( S  .\/  T
)  .<_  ( ( C 
.\/  P )  .\/  ( C  .\/  Q ) ) )
501, 3dalempeb 29828 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  ( Base `  K ) )
511, 3dalemqeb 29829 . . . . . . . . . . 11  |-  ( ph  ->  Q  e.  ( Base `  K ) )
527, 9latjjdi 14209 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( C  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) ) )  -> 
( C  .\/  ( P  .\/  Q ) )  =  ( ( C 
.\/  P )  .\/  ( C  .\/  Q ) ) )
532, 4, 50, 51, 52syl13anc 1184 . . . . . . . . . 10  |-  ( ph  ->  ( C  .\/  ( P  .\/  Q ) )  =  ( ( C 
.\/  P )  .\/  ( C  .\/  Q ) ) )
5449, 53breqtrrd 4049 . . . . . . . . 9  |-  ( ph  ->  ( S  .\/  T
)  .<_  ( C  .\/  ( P  .\/  Q ) ) )
551dalemclrju 29825 . . . . . . . . . . 11  |-  ( ph  ->  C  .<_  ( R  .\/  U ) )
561dalemuea 29820 . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  A )
57 simp313 1104 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  -.  C  .<_  ( R  .\/  P ) )
581, 57sylbi 187 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  C  .<_  ( R 
.\/  P ) )
598, 9, 3atnlej1 29568 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( C  e.  A  /\  R  e.  A  /\  P  e.  A
)  /\  -.  C  .<_  ( R  .\/  P
) )  ->  C  =/=  R )
6013, 15, 30, 17, 58, 59syl131anc 1195 . . . . . . . . . . . 12  |-  ( ph  ->  C  =/=  R )
618, 9, 3hlatexch1 29584 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( C  e.  A  /\  U  e.  A  /\  R  e.  A
)  /\  C  =/=  R )  ->  ( C  .<_  ( R  .\/  U
)  ->  U  .<_  ( R  .\/  C ) ) )
6213, 15, 56, 30, 60, 61syl131anc 1195 . . . . . . . . . . 11  |-  ( ph  ->  ( C  .<_  ( R 
.\/  U )  ->  U  .<_  ( R  .\/  C ) ) )
6355, 62mpd 14 . . . . . . . . . 10  |-  ( ph  ->  U  .<_  ( R  .\/  C ) )
649, 3hlatjcom 29557 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  C  e.  A  /\  R  e.  A )  ->  ( C  .\/  R
)  =  ( R 
.\/  C ) )
6513, 15, 30, 64syl3anc 1182 . . . . . . . . . 10  |-  ( ph  ->  ( C  .\/  R
)  =  ( R 
.\/  C ) )
6663, 65breqtrrd 4049 . . . . . . . . 9  |-  ( ph  ->  U  .<_  ( C  .\/  R ) )
671, 9, 3dalemsjteb 29835 . . . . . . . . . 10  |-  ( ph  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
681, 9, 3dalempjqeb 29834 . . . . . . . . . . 11  |-  ( ph  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
697, 9latjcl 14156 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  C  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  ( C  .\/  ( P  .\/  Q ) )  e.  (
Base `  K )
)
702, 4, 68, 69syl3anc 1182 . . . . . . . . . 10  |-  ( ph  ->  ( C  .\/  ( P  .\/  Q ) )  e.  ( Base `  K
) )
711, 3dalemueb 29833 . . . . . . . . . 10  |-  ( ph  ->  U  e.  ( Base `  K ) )
727, 9, 3hlatjcl 29556 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  C  e.  A  /\  R  e.  A )  ->  ( C  .\/  R
)  e.  ( Base `  K ) )
7313, 15, 30, 72syl3anc 1182 . . . . . . . . . 10  |-  ( ph  ->  ( C  .\/  R
)  e.  ( Base `  K ) )
747, 8, 9latjlej12 14173 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( ( S  .\/  T )  e.  ( Base `  K )  /\  ( C  .\/  ( P  .\/  Q ) )  e.  (
Base `  K )
)  /\  ( U  e.  ( Base `  K
)  /\  ( C  .\/  R )  e.  (
Base `  K )
) )  ->  (
( ( S  .\/  T )  .<_  ( C  .\/  ( P  .\/  Q
) )  /\  U  .<_  ( C  .\/  R
) )  ->  (
( S  .\/  T
)  .\/  U )  .<_  ( ( C  .\/  ( P  .\/  Q ) )  .\/  ( C 
.\/  R ) ) ) )
752, 67, 70, 71, 73, 74syl122anc 1191 . . . . . . . . 9  |-  ( ph  ->  ( ( ( S 
.\/  T )  .<_  ( C  .\/  ( P 
.\/  Q ) )  /\  U  .<_  ( C 
.\/  R ) )  ->  ( ( S 
.\/  T )  .\/  U )  .<_  ( ( C  .\/  ( P  .\/  Q ) )  .\/  ( C  .\/  R ) ) ) )
7654, 66, 75mp2and 660 . . . . . . . 8  |-  ( ph  ->  ( ( S  .\/  T )  .\/  U ) 
.<_  ( ( C  .\/  ( P  .\/  Q ) )  .\/  ( C 
.\/  R ) ) )
771, 3dalemreb 29830 . . . . . . . . 9  |-  ( ph  ->  R  e.  ( Base `  K ) )
787, 9latjjdi 14209 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( C  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  R  e.  ( Base `  K )
) )  ->  ( C  .\/  ( ( P 
.\/  Q )  .\/  R ) )  =  ( ( C  .\/  ( P  .\/  Q ) ) 
.\/  ( C  .\/  R ) ) )
792, 4, 68, 77, 78syl13anc 1184 . . . . . . . 8  |-  ( ph  ->  ( C  .\/  (
( P  .\/  Q
)  .\/  R )
)  =  ( ( C  .\/  ( P 
.\/  Q ) ) 
.\/  ( C  .\/  R ) ) )
8076, 79breqtrrd 4049 . . . . . . 7  |-  ( ph  ->  ( ( S  .\/  T )  .\/  U ) 
.<_  ( C  .\/  (
( P  .\/  Q
)  .\/  R )
) )
81 dalem-cly.z . . . . . . 7  |-  Z  =  ( ( S  .\/  T )  .\/  U )
8214oveq2i 5869 . . . . . . 7  |-  ( C 
.\/  Y )  =  ( C  .\/  (
( P  .\/  Q
)  .\/  R )
)
8380, 81, 823brtr4g 4055 . . . . . 6  |-  ( ph  ->  Z  .<_  ( C  .\/  Y ) )
84 breq2 4027 . . . . . 6  |-  ( ( C  .\/  Y )  =  Y  ->  ( Z  .<_  ( C  .\/  Y )  <->  Z  .<_  Y ) )
8583, 84syl5ibcom 211 . . . . 5  |-  ( ph  ->  ( ( C  .\/  Y )  =  Y  ->  Z  .<_  Y ) )
8611, 85sylbid 206 . . . 4  |-  ( ph  ->  ( C  .<_  Y  ->  Z  .<_  Y ) )
871dalemzeo 29822 . . . . . 6  |-  ( ph  ->  Z  e.  O )
881dalemyeo 29821 . . . . . 6  |-  ( ph  ->  Y  e.  O )
898, 5lplncmp 29751 . . . . . 6  |-  ( ( K  e.  HL  /\  Z  e.  O  /\  Y  e.  O )  ->  ( Z  .<_  Y  <->  Z  =  Y ) )
9013, 87, 88, 89syl3anc 1182 . . . . 5  |-  ( ph  ->  ( Z  .<_  Y  <->  Z  =  Y ) )
91 eqcom 2285 . . . . 5  |-  ( Z  =  Y  <->  Y  =  Z )
9290, 91syl6bb 252 . . . 4  |-  ( ph  ->  ( Z  .<_  Y  <->  Y  =  Z ) )
9386, 92sylibd 205 . . 3  |-  ( ph  ->  ( C  .<_  Y  ->  Y  =  Z )
)
9493necon3ad 2482 . 2  |-  ( ph  ->  ( Y  =/=  Z  ->  -.  C  .<_  Y ) )
9594imp 418 1  |-  ( (
ph  /\  Y  =/=  Z )  ->  -.  C  .<_  Y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   Latclat 14151   Atomscatm 29453   HLchlt 29540   LPlanesclpl 29681
This theorem is referenced by:  dalem9  29861
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688
  Copyright terms: Public domain W3C validator