Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem21 Unicode version

Theorem dalem21 29883
Description: Lemma for dath 29925. Show that lines  c d and  P S intersect at an atom. (Contributed by NM, 2-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalem.l  |-  .<_  =  ( le `  K )
dalem.j  |-  .\/  =  ( join `  K )
dalem.a  |-  A  =  ( Atoms `  K )
dalem.ps  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
dalem21.m  |-  ./\  =  ( meet `  K )
dalem21.o  |-  O  =  ( LPlanes `  K )
dalem21.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem21.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
Assertion
Ref Expression
dalem21  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  d )  ./\  ( P  .\/  S ) )  e.  A )

Proof of Theorem dalem21
StepHypRef Expression
1 dalem.ph . . . 4  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
21dalemkehl 29812 . . 3  |-  ( ph  ->  K  e.  HL )
323ad2ant1 976 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  HL )
4 dalem.l . . . 4  |-  .<_  =  ( le `  K )
5 dalem.j . . . 4  |-  .\/  =  ( join `  K )
6 dalem.a . . . 4  |-  A  =  ( Atoms `  K )
7 dalem.ps . . . 4  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
81, 4, 5, 6, 7dalemcjden 29881 . . 3  |-  ( (
ph  /\  ps )  ->  ( c  .\/  d
)  e.  ( LLines `  K ) )
983adant2 974 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  d
)  e.  ( LLines `  K ) )
10 dalem21.o . . . 4  |-  O  =  ( LPlanes `  K )
11 dalem21.y . . . 4  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
121, 4, 5, 6, 10, 11dalempjsen 29842 . . 3  |-  ( ph  ->  ( P  .\/  S
)  e.  ( LLines `  K ) )
13123ad2ant1 976 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( P  .\/  S
)  e.  ( LLines `  K ) )
141, 4, 5, 6, 10, 11dalemply 29843 . . . . . . 7  |-  ( ph  ->  P  .<_  Y )
1514adantr 451 . . . . . 6  |-  ( (
ph  /\  Y  =  Z )  ->  P  .<_  Y )
16 dalem21.z . . . . . . 7  |-  Z  =  ( ( S  .\/  T )  .\/  U )
171, 4, 5, 6, 16dalemsly 29844 . . . . . 6  |-  ( (
ph  /\  Y  =  Z )  ->  S  .<_  Y )
181dalemkelat 29813 . . . . . . . 8  |-  ( ph  ->  K  e.  Lat )
191, 6dalempeb 29828 . . . . . . . 8  |-  ( ph  ->  P  e.  ( Base `  K ) )
201, 6dalemseb 29831 . . . . . . . 8  |-  ( ph  ->  S  e.  ( Base `  K ) )
211, 10dalemyeb 29838 . . . . . . . 8  |-  ( ph  ->  Y  e.  ( Base `  K ) )
22 eqid 2283 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
2322, 4, 5latjle12 14168 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  S  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  Y  /\  S  .<_  Y )  <-> 
( P  .\/  S
)  .<_  Y ) )
2418, 19, 20, 21, 23syl13anc 1184 . . . . . . 7  |-  ( ph  ->  ( ( P  .<_  Y  /\  S  .<_  Y )  <-> 
( P  .\/  S
)  .<_  Y ) )
2524adantr 451 . . . . . 6  |-  ( (
ph  /\  Y  =  Z )  ->  (
( P  .<_  Y  /\  S  .<_  Y )  <->  ( P  .\/  S )  .<_  Y ) )
2615, 17, 25mpbi2and 887 . . . . 5  |-  ( (
ph  /\  Y  =  Z )  ->  ( P  .\/  S )  .<_  Y )
27263adant3 975 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( P  .\/  S
)  .<_  Y )
287dalem-ccly 29874 . . . . . . 7  |-  ( ps 
->  -.  c  .<_  Y )
2928adantl 452 . . . . . 6  |-  ( (
ph  /\  ps )  ->  -.  c  .<_  Y )
3018adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  K  e.  Lat )
317, 6dalemcceb 29878 . . . . . . . . 9  |-  ( ps 
->  c  e.  ( Base `  K ) )
3231adantl 452 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  c  e.  ( Base `  K ) )
337dalemddea 29873 . . . . . . . . . 10  |-  ( ps 
->  d  e.  A
)
3422, 6atbase 29479 . . . . . . . . . 10  |-  ( d  e.  A  ->  d  e.  ( Base `  K
) )
3533, 34syl 15 . . . . . . . . 9  |-  ( ps 
->  d  e.  ( Base `  K ) )
3635adantl 452 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  d  e.  ( Base `  K ) )
3722, 4, 5latlej1 14166 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  c  e.  ( Base `  K )  /\  d  e.  ( Base `  K
) )  ->  c  .<_  ( c  .\/  d
) )
3830, 32, 36, 37syl3anc 1182 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  c  .<_  ( c  .\/  d ) )
39 eqid 2283 . . . . . . . . . 10  |-  ( LLines `  K )  =  (
LLines `  K )
4022, 39llnbase 29698 . . . . . . . . 9  |-  ( ( c  .\/  d )  e.  ( LLines `  K
)  ->  ( c  .\/  d )  e.  (
Base `  K )
)
418, 40syl 15 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  ( c  .\/  d
)  e.  ( Base `  K ) )
4221adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  Y  e.  ( Base `  K ) )
4322, 4lattr 14162 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( c  e.  (
Base `  K )  /\  ( c  .\/  d
)  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) ) )  -> 
( ( c  .<_  ( c  .\/  d
)  /\  ( c  .\/  d )  .<_  Y )  ->  c  .<_  Y ) )
4430, 32, 41, 42, 43syl13anc 1184 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  ( ( c  .<_  ( c  .\/  d
)  /\  ( c  .\/  d )  .<_  Y )  ->  c  .<_  Y ) )
4538, 44mpand 656 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( ( c  .\/  d )  .<_  Y  -> 
c  .<_  Y ) )
4629, 45mtod 168 . . . . 5  |-  ( (
ph  /\  ps )  ->  -.  ( c  .\/  d )  .<_  Y )
47463adant2 974 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  ( c  .\/  d
)  .<_  Y )
48 nbrne2 4041 . . . 4  |-  ( ( ( P  .\/  S
)  .<_  Y  /\  -.  ( c  .\/  d
)  .<_  Y )  -> 
( P  .\/  S
)  =/=  ( c 
.\/  d ) )
4927, 47, 48syl2anc 642 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( P  .\/  S
)  =/=  ( c 
.\/  d ) )
5049necomd 2529 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  d
)  =/=  ( P 
.\/  S ) )
51 hlatl 29550 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  AtLat )
522, 51syl 15 . . . . 5  |-  ( ph  ->  K  e.  AtLat )
5352adantr 451 . . . 4  |-  ( (
ph  /\  ps )  ->  K  e.  AtLat )
541dalempea 29815 . . . . . . 7  |-  ( ph  ->  P  e.  A )
551dalemsea 29818 . . . . . . 7  |-  ( ph  ->  S  e.  A )
5622, 5, 6hlatjcl 29556 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  ->  ( P  .\/  S
)  e.  ( Base `  K ) )
572, 54, 55, 56syl3anc 1182 . . . . . 6  |-  ( ph  ->  ( P  .\/  S
)  e.  ( Base `  K ) )
5857adantr 451 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( P  .\/  S
)  e.  ( Base `  K ) )
59 dalem21.m . . . . . 6  |-  ./\  =  ( meet `  K )
6022, 59latmcl 14157 . . . . 5  |-  ( ( K  e.  Lat  /\  ( c  .\/  d
)  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
) )  ->  (
( c  .\/  d
)  ./\  ( P  .\/  S ) )  e.  ( Base `  K
) )
6130, 41, 58, 60syl3anc 1182 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( c  .\/  d )  ./\  ( P  .\/  S ) )  e.  ( Base `  K
) )
621, 4, 5, 6, 10, 11dalemcea 29849 . . . . 5  |-  ( ph  ->  C  e.  A )
6362adantr 451 . . . 4  |-  ( (
ph  /\  ps )  ->  C  e.  A )
647dalemclccjdd 29877 . . . . . 6  |-  ( ps 
->  C  .<_  ( c 
.\/  d ) )
6564adantl 452 . . . . 5  |-  ( (
ph  /\  ps )  ->  C  .<_  ( c  .\/  d ) )
661dalemclpjs 29823 . . . . . 6  |-  ( ph  ->  C  .<_  ( P  .\/  S ) )
6766adantr 451 . . . . 5  |-  ( (
ph  /\  ps )  ->  C  .<_  ( P  .\/  S ) )
681, 6dalemceb 29827 . . . . . . 7  |-  ( ph  ->  C  e.  ( Base `  K ) )
6968adantr 451 . . . . . 6  |-  ( (
ph  /\  ps )  ->  C  e.  ( Base `  K ) )
7022, 4, 59latlem12 14184 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( C  e.  ( Base `  K )  /\  ( c  .\/  d
)  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
) ) )  -> 
( ( C  .<_  ( c  .\/  d )  /\  C  .<_  ( P 
.\/  S ) )  <-> 
C  .<_  ( ( c 
.\/  d )  ./\  ( P  .\/  S ) ) ) )
7130, 69, 41, 58, 70syl13anc 1184 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ( C  .<_  ( c  .\/  d )  /\  C  .<_  ( P 
.\/  S ) )  <-> 
C  .<_  ( ( c 
.\/  d )  ./\  ( P  .\/  S ) ) ) )
7265, 67, 71mpbi2and 887 . . . 4  |-  ( (
ph  /\  ps )  ->  C  .<_  ( (
c  .\/  d )  ./\  ( P  .\/  S
) ) )
73 eqid 2283 . . . . 5  |-  ( 0.
`  K )  =  ( 0. `  K
)
7422, 4, 73, 6atlen0 29500 . . . 4  |-  ( ( ( K  e.  AtLat  /\  ( ( c  .\/  d )  ./\  ( P  .\/  S ) )  e.  ( Base `  K
)  /\  C  e.  A )  /\  C  .<_  ( ( c  .\/  d )  ./\  ( P  .\/  S ) ) )  ->  ( (
c  .\/  d )  ./\  ( P  .\/  S
) )  =/=  ( 0. `  K ) )
7553, 61, 63, 72, 74syl31anc 1185 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( c  .\/  d )  ./\  ( P  .\/  S ) )  =/=  ( 0. `  K ) )
76753adant2 974 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  d )  ./\  ( P  .\/  S ) )  =/=  ( 0. `  K ) )
7759, 73, 6, 392llnmat 29713 . 2  |-  ( ( ( K  e.  HL  /\  ( c  .\/  d
)  e.  ( LLines `  K )  /\  ( P  .\/  S )  e.  ( LLines `  K )
)  /\  ( (
c  .\/  d )  =/=  ( P  .\/  S
)  /\  ( (
c  .\/  d )  ./\  ( P  .\/  S
) )  =/=  ( 0. `  K ) ) )  ->  ( (
c  .\/  d )  ./\  ( P  .\/  S
) )  e.  A
)
783, 9, 13, 50, 76, 77syl32anc 1190 1  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  d )  ./\  ( P  .\/  S ) )  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   meetcmee 14079   0.cp0 14143   Latclat 14151   Atomscatm 29453   AtLatcal 29454   HLchlt 29540   LLinesclln 29680   LPlanesclpl 29681
This theorem is referenced by:  dalem22  29884
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688
  Copyright terms: Public domain W3C validator