Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem23 Unicode version

Theorem dalem23 30190
Description: Lemma for dath 30230. Show that auxiliary atom  G is an atom. (Contributed by NM, 2-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalem.l  |-  .<_  =  ( le `  K )
dalem.j  |-  .\/  =  ( join `  K )
dalem.a  |-  A  =  ( Atoms `  K )
dalem.ps  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
dalem23.m  |-  ./\  =  ( meet `  K )
dalem23.o  |-  O  =  ( LPlanes `  K )
dalem23.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem23.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem23.g  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
Assertion
Ref Expression
dalem23  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  e.  A )

Proof of Theorem dalem23
StepHypRef Expression
1 dalem23.g . 2  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
2 dalem.ph . . . . . . . 8  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
32dalemkehl 30117 . . . . . . 7  |-  ( ph  ->  K  e.  HL )
43adantr 452 . . . . . 6  |-  ( (
ph  /\  ps )  ->  K  e.  HL )
5 dalem.ps . . . . . . . 8  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
65dalemccea 30177 . . . . . . 7  |-  ( ps 
->  c  e.  A
)
76adantl 453 . . . . . 6  |-  ( (
ph  /\  ps )  ->  c  e.  A )
82dalempea 30120 . . . . . . 7  |-  ( ph  ->  P  e.  A )
98adantr 452 . . . . . 6  |-  ( (
ph  /\  ps )  ->  P  e.  A )
105dalemddea 30178 . . . . . . 7  |-  ( ps 
->  d  e.  A
)
1110adantl 453 . . . . . 6  |-  ( (
ph  /\  ps )  ->  d  e.  A )
122dalemsea 30123 . . . . . . 7  |-  ( ph  ->  S  e.  A )
1312adantr 452 . . . . . 6  |-  ( (
ph  /\  ps )  ->  S  e.  A )
14 dalem.j . . . . . . 7  |-  .\/  =  ( join `  K )
15 dalem.a . . . . . . 7  |-  A  =  ( Atoms `  K )
1614, 15hlatj4 29868 . . . . . 6  |-  ( ( K  e.  HL  /\  ( c  e.  A  /\  P  e.  A
)  /\  ( d  e.  A  /\  S  e.  A ) )  -> 
( ( c  .\/  P )  .\/  ( d 
.\/  S ) )  =  ( ( c 
.\/  d )  .\/  ( P  .\/  S ) ) )
174, 7, 9, 11, 13, 16syl122anc 1193 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ( c  .\/  P )  .\/  ( d 
.\/  S ) )  =  ( ( c 
.\/  d )  .\/  ( P  .\/  S ) ) )
18173adant2 976 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  P )  .\/  ( d 
.\/  S ) )  =  ( ( c 
.\/  d )  .\/  ( P  .\/  S ) ) )
19 dalem.l . . . . 5  |-  .<_  =  ( le `  K )
20 dalem23.o . . . . 5  |-  O  =  ( LPlanes `  K )
21 dalem23.y . . . . 5  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
22 dalem23.z . . . . 5  |-  Z  =  ( ( S  .\/  T )  .\/  U )
232, 19, 14, 15, 5, 20, 21, 22dalem22 30189 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  d )  .\/  ( P  .\/  S ) )  e.  O )
2418, 23eqeltrd 2486 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  P )  .\/  ( d 
.\/  S ) )  e.  O )
2533ad2ant1 978 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  HL )
262, 19, 14, 15, 20, 21dalemply 30148 . . . . . . . 8  |-  ( ph  ->  P  .<_  Y )
275dalem-ccly 30179 . . . . . . . 8  |-  ( ps 
->  -.  c  .<_  Y )
28 nbrne2 4198 . . . . . . . 8  |-  ( ( P  .<_  Y  /\  -.  c  .<_  Y )  ->  P  =/=  c
)
2926, 27, 28syl2an 464 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  P  =/=  c )
3029necomd 2658 . . . . . 6  |-  ( (
ph  /\  ps )  ->  c  =/=  P )
31 eqid 2412 . . . . . . 7  |-  ( LLines `  K )  =  (
LLines `  K )
3214, 15, 31llni2 30006 . . . . . 6  |-  ( ( ( K  e.  HL  /\  c  e.  A  /\  P  e.  A )  /\  c  =/=  P
)  ->  ( c  .\/  P )  e.  (
LLines `  K ) )
334, 7, 9, 30, 32syl31anc 1187 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( c  .\/  P
)  e.  ( LLines `  K ) )
34333adant2 976 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  P
)  e.  ( LLines `  K ) )
35103ad2ant3 980 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
d  e.  A )
36123ad2ant1 978 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  S  e.  A )
372, 19, 14, 15, 22dalemsly 30149 . . . . . . . 8  |-  ( (
ph  /\  Y  =  Z )  ->  S  .<_  Y )
38373adant3 977 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  S  .<_  Y )
395dalem-ddly 30180 . . . . . . . 8  |-  ( ps 
->  -.  d  .<_  Y )
40393ad2ant3 980 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  d  .<_  Y )
41 nbrne2 4198 . . . . . . 7  |-  ( ( S  .<_  Y  /\  -.  d  .<_  Y )  ->  S  =/=  d
)
4238, 40, 41syl2anc 643 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  S  =/=  d )
4342necomd 2658 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
d  =/=  S )
4414, 15, 31llni2 30006 . . . . 5  |-  ( ( ( K  e.  HL  /\  d  e.  A  /\  S  e.  A )  /\  d  =/=  S
)  ->  ( d  .\/  S )  e.  (
LLines `  K ) )
4525, 35, 36, 43, 44syl31anc 1187 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( d  .\/  S
)  e.  ( LLines `  K ) )
46 dalem23.m . . . . 5  |-  ./\  =  ( meet `  K )
4714, 46, 15, 31, 202llnmj 30054 . . . 4  |-  ( ( K  e.  HL  /\  ( c  .\/  P
)  e.  ( LLines `  K )  /\  (
d  .\/  S )  e.  ( LLines `  K )
)  ->  ( (
( c  .\/  P
)  ./\  ( d  .\/  S ) )  e.  A  <->  ( ( c 
.\/  P )  .\/  ( d  .\/  S
) )  e.  O
) )
4825, 34, 45, 47syl3anc 1184 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( c 
.\/  P )  ./\  ( d  .\/  S
) )  e.  A  <->  ( ( c  .\/  P
)  .\/  ( d  .\/  S ) )  e.  O ) )
4924, 48mpbird 224 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  P )  ./\  ( d  .\/  S ) )  e.  A )
501, 49syl5eqel 2496 1  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2575   class class class wbr 4180   ` cfv 5421  (class class class)co 6048   Basecbs 13432   lecple 13499   joincjn 14364   meetcmee 14365   Atomscatm 29758   HLchlt 29845   LLinesclln 29985   LPlanesclpl 29986
This theorem is referenced by:  dalem24  30191  dalem27  30193  dalem28  30194  dalem29  30195  dalem38  30204  dalem39  30205  dalem41  30207  dalem42  30208  dalem43  30209  dalem44  30210  dalem45  30211  dalem51  30217  dalem52  30218  dalem54  30220  dalem55  30221  dalem57  30223  dalem58  30224  dalem59  30225
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-undef 6510  df-riota 6516  df-poset 14366  df-plt 14378  df-lub 14394  df-glb 14395  df-join 14396  df-meet 14397  df-p0 14431  df-lat 14438  df-clat 14500  df-oposet 29671  df-ol 29673  df-oml 29674  df-covers 29761  df-ats 29762  df-atl 29793  df-cvlat 29817  df-hlat 29846  df-llines 29992  df-lplanes 29993
  Copyright terms: Public domain W3C validator