Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem23 Unicode version

Theorem dalem23 29885
Description: Lemma for dath 29925. Show that auxiliary atom  G is an atom. (Contributed by NM, 2-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalem.l  |-  .<_  =  ( le `  K )
dalem.j  |-  .\/  =  ( join `  K )
dalem.a  |-  A  =  ( Atoms `  K )
dalem.ps  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
dalem23.m  |-  ./\  =  ( meet `  K )
dalem23.o  |-  O  =  ( LPlanes `  K )
dalem23.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem23.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem23.g  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
Assertion
Ref Expression
dalem23  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  e.  A )

Proof of Theorem dalem23
StepHypRef Expression
1 dalem23.g . 2  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
2 dalem.ph . . . . . . . 8  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
32dalemkehl 29812 . . . . . . 7  |-  ( ph  ->  K  e.  HL )
43adantr 451 . . . . . 6  |-  ( (
ph  /\  ps )  ->  K  e.  HL )
5 dalem.ps . . . . . . . 8  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
65dalemccea 29872 . . . . . . 7  |-  ( ps 
->  c  e.  A
)
76adantl 452 . . . . . 6  |-  ( (
ph  /\  ps )  ->  c  e.  A )
82dalempea 29815 . . . . . . 7  |-  ( ph  ->  P  e.  A )
98adantr 451 . . . . . 6  |-  ( (
ph  /\  ps )  ->  P  e.  A )
105dalemddea 29873 . . . . . . 7  |-  ( ps 
->  d  e.  A
)
1110adantl 452 . . . . . 6  |-  ( (
ph  /\  ps )  ->  d  e.  A )
122dalemsea 29818 . . . . . . 7  |-  ( ph  ->  S  e.  A )
1312adantr 451 . . . . . 6  |-  ( (
ph  /\  ps )  ->  S  e.  A )
14 dalem.j . . . . . . 7  |-  .\/  =  ( join `  K )
15 dalem.a . . . . . . 7  |-  A  =  ( Atoms `  K )
1614, 15hlatj4 29563 . . . . . 6  |-  ( ( K  e.  HL  /\  ( c  e.  A  /\  P  e.  A
)  /\  ( d  e.  A  /\  S  e.  A ) )  -> 
( ( c  .\/  P )  .\/  ( d 
.\/  S ) )  =  ( ( c 
.\/  d )  .\/  ( P  .\/  S ) ) )
174, 7, 9, 11, 13, 16syl122anc 1191 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ( c  .\/  P )  .\/  ( d 
.\/  S ) )  =  ( ( c 
.\/  d )  .\/  ( P  .\/  S ) ) )
18173adant2 974 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  P )  .\/  ( d 
.\/  S ) )  =  ( ( c 
.\/  d )  .\/  ( P  .\/  S ) ) )
19 dalem.l . . . . 5  |-  .<_  =  ( le `  K )
20 dalem23.o . . . . 5  |-  O  =  ( LPlanes `  K )
21 dalem23.y . . . . 5  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
22 dalem23.z . . . . 5  |-  Z  =  ( ( S  .\/  T )  .\/  U )
232, 19, 14, 15, 5, 20, 21, 22dalem22 29884 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  d )  .\/  ( P  .\/  S ) )  e.  O )
2418, 23eqeltrd 2357 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  P )  .\/  ( d 
.\/  S ) )  e.  O )
2533ad2ant1 976 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  HL )
262, 19, 14, 15, 20, 21dalemply 29843 . . . . . . . 8  |-  ( ph  ->  P  .<_  Y )
275dalem-ccly 29874 . . . . . . . 8  |-  ( ps 
->  -.  c  .<_  Y )
28 nbrne2 4041 . . . . . . . 8  |-  ( ( P  .<_  Y  /\  -.  c  .<_  Y )  ->  P  =/=  c
)
2926, 27, 28syl2an 463 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  P  =/=  c )
3029necomd 2529 . . . . . 6  |-  ( (
ph  /\  ps )  ->  c  =/=  P )
31 eqid 2283 . . . . . . 7  |-  ( LLines `  K )  =  (
LLines `  K )
3214, 15, 31llni2 29701 . . . . . 6  |-  ( ( ( K  e.  HL  /\  c  e.  A  /\  P  e.  A )  /\  c  =/=  P
)  ->  ( c  .\/  P )  e.  (
LLines `  K ) )
334, 7, 9, 30, 32syl31anc 1185 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( c  .\/  P
)  e.  ( LLines `  K ) )
34333adant2 974 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  P
)  e.  ( LLines `  K ) )
35103ad2ant3 978 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
d  e.  A )
36123ad2ant1 976 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  S  e.  A )
372, 19, 14, 15, 22dalemsly 29844 . . . . . . . 8  |-  ( (
ph  /\  Y  =  Z )  ->  S  .<_  Y )
38373adant3 975 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  S  .<_  Y )
395dalem-ddly 29875 . . . . . . . 8  |-  ( ps 
->  -.  d  .<_  Y )
40393ad2ant3 978 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  d  .<_  Y )
41 nbrne2 4041 . . . . . . 7  |-  ( ( S  .<_  Y  /\  -.  d  .<_  Y )  ->  S  =/=  d
)
4238, 40, 41syl2anc 642 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  S  =/=  d )
4342necomd 2529 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
d  =/=  S )
4414, 15, 31llni2 29701 . . . . 5  |-  ( ( ( K  e.  HL  /\  d  e.  A  /\  S  e.  A )  /\  d  =/=  S
)  ->  ( d  .\/  S )  e.  (
LLines `  K ) )
4525, 35, 36, 43, 44syl31anc 1185 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( d  .\/  S
)  e.  ( LLines `  K ) )
46 dalem23.m . . . . 5  |-  ./\  =  ( meet `  K )
4714, 46, 15, 31, 202llnmj 29749 . . . 4  |-  ( ( K  e.  HL  /\  ( c  .\/  P
)  e.  ( LLines `  K )  /\  (
d  .\/  S )  e.  ( LLines `  K )
)  ->  ( (
( c  .\/  P
)  ./\  ( d  .\/  S ) )  e.  A  <->  ( ( c 
.\/  P )  .\/  ( d  .\/  S
) )  e.  O
) )
4825, 34, 45, 47syl3anc 1182 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( c 
.\/  P )  ./\  ( d  .\/  S
) )  e.  A  <->  ( ( c  .\/  P
)  .\/  ( d  .\/  S ) )  e.  O ) )
4924, 48mpbird 223 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  P )  ./\  ( d  .\/  S ) )  e.  A )
501, 49syl5eqel 2367 1  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   meetcmee 14079   Atomscatm 29453   HLchlt 29540   LLinesclln 29680   LPlanesclpl 29681
This theorem is referenced by:  dalem24  29886  dalem27  29888  dalem28  29889  dalem29  29890  dalem38  29899  dalem39  29900  dalem41  29902  dalem42  29903  dalem43  29904  dalem44  29905  dalem45  29906  dalem51  29912  dalem52  29913  dalem54  29915  dalem55  29916  dalem57  29918  dalem58  29919  dalem59  29920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688
  Copyright terms: Public domain W3C validator