Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem24 Unicode version

Theorem dalem24 29704
Description: Lemma for dath 29743. Show that auxiliary atom  G is outside of plane  Y. (Contributed by NM, 2-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalem.l  |-  .<_  =  ( le `  K )
dalem.j  |-  .\/  =  ( join `  K )
dalem.a  |-  A  =  ( Atoms `  K )
dalem.ps  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
dalem23.m  |-  ./\  =  ( meet `  K )
dalem23.o  |-  O  =  ( LPlanes `  K )
dalem23.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem23.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem23.g  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
Assertion
Ref Expression
dalem24  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  G  .<_  Y )

Proof of Theorem dalem24
StepHypRef Expression
1 dalem23.g . . . . 5  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
21oveq1i 5910 . . . 4  |-  ( G 
./\  Y )  =  ( ( ( c 
.\/  P )  ./\  ( d  .\/  S
) )  ./\  Y
)
3 dalem.ph . . . . . . . 8  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
43dalemkehl 29630 . . . . . . 7  |-  ( ph  ->  K  e.  HL )
5 hlol 29369 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OL )
64, 5syl 15 . . . . . 6  |-  ( ph  ->  K  e.  OL )
763ad2ant1 976 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  OL )
843ad2ant1 976 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  HL )
9 dalem.ps . . . . . . . 8  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
109dalemccea 29690 . . . . . . 7  |-  ( ps 
->  c  e.  A
)
11103ad2ant3 978 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
c  e.  A )
123dalempea 29633 . . . . . . 7  |-  ( ph  ->  P  e.  A )
13123ad2ant1 976 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  P  e.  A )
14 eqid 2316 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
15 dalem.j . . . . . . 7  |-  .\/  =  ( join `  K )
16 dalem.a . . . . . . 7  |-  A  =  ( Atoms `  K )
1714, 15, 16hlatjcl 29374 . . . . . 6  |-  ( ( K  e.  HL  /\  c  e.  A  /\  P  e.  A )  ->  ( c  .\/  P
)  e.  ( Base `  K ) )
188, 11, 13, 17syl3anc 1182 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  P
)  e.  ( Base `  K ) )
199dalemddea 29691 . . . . . . 7  |-  ( ps 
->  d  e.  A
)
20193ad2ant3 978 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
d  e.  A )
213dalemsea 29636 . . . . . . 7  |-  ( ph  ->  S  e.  A )
22213ad2ant1 976 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  S  e.  A )
2314, 15, 16hlatjcl 29374 . . . . . 6  |-  ( ( K  e.  HL  /\  d  e.  A  /\  S  e.  A )  ->  ( d  .\/  S
)  e.  ( Base `  K ) )
248, 20, 22, 23syl3anc 1182 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( d  .\/  S
)  e.  ( Base `  K ) )
25 dalem23.o . . . . . . 7  |-  O  =  ( LPlanes `  K )
263, 25dalemyeb 29656 . . . . . 6  |-  ( ph  ->  Y  e.  ( Base `  K ) )
27263ad2ant1 976 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  Y  e.  ( Base `  K ) )
28 dalem23.m . . . . . 6  |-  ./\  =  ( meet `  K )
2914, 28latmmdir 29243 . . . . 5  |-  ( ( K  e.  OL  /\  ( ( c  .\/  P )  e.  ( Base `  K )  /\  (
d  .\/  S )  e.  ( Base `  K
)  /\  Y  e.  ( Base `  K )
) )  ->  (
( ( c  .\/  P )  ./\  ( d  .\/  S ) )  ./\  Y )  =  ( ( ( c  .\/  P
)  ./\  Y )  ./\  ( ( d  .\/  S )  ./\  Y )
) )
307, 18, 24, 27, 29syl13anc 1184 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( c 
.\/  P )  ./\  ( d  .\/  S
) )  ./\  Y
)  =  ( ( ( c  .\/  P
)  ./\  Y )  ./\  ( ( d  .\/  S )  ./\  Y )
) )
312, 30syl5eq 2360 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( G  ./\  Y
)  =  ( ( ( c  .\/  P
)  ./\  Y )  ./\  ( ( d  .\/  S )  ./\  Y )
) )
3215, 16hlatjcom 29375 . . . . . . 7  |-  ( ( K  e.  HL  /\  c  e.  A  /\  P  e.  A )  ->  ( c  .\/  P
)  =  ( P 
.\/  c ) )
338, 11, 13, 32syl3anc 1182 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  P
)  =  ( P 
.\/  c ) )
3433oveq1d 5915 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  P )  ./\  Y )  =  ( ( P 
.\/  c )  ./\  Y ) )
35 dalem.l . . . . . . . 8  |-  .<_  =  ( le `  K )
36 dalem23.y . . . . . . . 8  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
373, 35, 15, 16, 25, 36dalemply 29661 . . . . . . 7  |-  ( ph  ->  P  .<_  Y )
38373ad2ant1 976 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  P  .<_  Y )
399dalem-ccly 29692 . . . . . . 7  |-  ( ps 
->  -.  c  .<_  Y )
40393ad2ant3 978 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  c  .<_  Y )
4114, 35, 15, 28, 162atjm 29452 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  c  e.  A  /\  Y  e.  ( Base `  K ) )  /\  ( P  .<_  Y  /\  -.  c  .<_  Y ) )  -> 
( ( P  .\/  c )  ./\  Y
)  =  P )
428, 13, 11, 27, 38, 40, 41syl132anc 1200 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( P  .\/  c )  ./\  Y
)  =  P )
4334, 42eqtrd 2348 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  P )  ./\  Y )  =  P )
4415, 16hlatjcom 29375 . . . . . . 7  |-  ( ( K  e.  HL  /\  d  e.  A  /\  S  e.  A )  ->  ( d  .\/  S
)  =  ( S 
.\/  d ) )
458, 20, 22, 44syl3anc 1182 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( d  .\/  S
)  =  ( S 
.\/  d ) )
4645oveq1d 5915 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( d  .\/  S )  ./\  Y )  =  ( ( S 
.\/  d )  ./\  Y ) )
47 dalem23.z . . . . . . . 8  |-  Z  =  ( ( S  .\/  T )  .\/  U )
483, 35, 15, 16, 47dalemsly 29662 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z )  ->  S  .<_  Y )
49483adant3 975 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  S  .<_  Y )
509dalem-ddly 29693 . . . . . . 7  |-  ( ps 
->  -.  d  .<_  Y )
51503ad2ant3 978 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  d  .<_  Y )
5214, 35, 15, 28, 162atjm 29452 . . . . . 6  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  d  e.  A  /\  Y  e.  ( Base `  K ) )  /\  ( S  .<_  Y  /\  -.  d  .<_  Y ) )  -> 
( ( S  .\/  d )  ./\  Y
)  =  S )
538, 22, 20, 27, 49, 51, 52syl132anc 1200 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( S  .\/  d )  ./\  Y
)  =  S )
5446, 53eqtrd 2348 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( d  .\/  S )  ./\  Y )  =  S )
5543, 54oveq12d 5918 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( c 
.\/  P )  ./\  Y )  ./\  ( (
d  .\/  S )  ./\  Y ) )  =  ( P  ./\  S
) )
563, 35, 15, 16, 25, 36dalempnes 29658 . . . . 5  |-  ( ph  ->  P  =/=  S )
57 hlatl 29368 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  AtLat )
584, 57syl 15 . . . . . 6  |-  ( ph  ->  K  e.  AtLat )
59 eqid 2316 . . . . . . 7  |-  ( 0.
`  K )  =  ( 0. `  K
)
6028, 59, 16atnem0 29326 . . . . . 6  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  S  e.  A )  ->  ( P  =/=  S  <->  ( P  ./\ 
S )  =  ( 0. `  K ) ) )
6158, 12, 21, 60syl3anc 1182 . . . . 5  |-  ( ph  ->  ( P  =/=  S  <->  ( P  ./\  S )  =  ( 0. `  K ) ) )
6256, 61mpbid 201 . . . 4  |-  ( ph  ->  ( P  ./\  S
)  =  ( 0.
`  K ) )
63623ad2ant1 976 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( P  ./\  S
)  =  ( 0.
`  K ) )
6431, 55, 633eqtrd 2352 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( G  ./\  Y
)  =  ( 0.
`  K ) )
65583ad2ant1 976 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  AtLat )
663, 35, 15, 16, 9, 28, 25, 36, 47, 1dalem23 29703 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  e.  A )
6714, 35, 28, 59, 16atnle 29325 . . 3  |-  ( ( K  e.  AtLat  /\  G  e.  A  /\  Y  e.  ( Base `  K
) )  ->  ( -.  G  .<_  Y  <->  ( G  ./\ 
Y )  =  ( 0. `  K ) ) )
6865, 66, 27, 67syl3anc 1182 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( -.  G  .<_  Y  <-> 
( G  ./\  Y
)  =  ( 0.
`  K ) ) )
6964, 68mpbird 223 1  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  G  .<_  Y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1633    e. wcel 1701    =/= wne 2479   class class class wbr 4060   ` cfv 5292  (class class class)co 5900   Basecbs 13195   lecple 13262   joincjn 14127   meetcmee 14128   0.cp0 14192   OLcol 29182   Atomscatm 29271   AtLatcal 29272   HLchlt 29358   LPlanesclpl 29499
This theorem is referenced by:  dalem27  29706  dalem30  29709  dalem54  29733
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-undef 6340  df-riota 6346  df-poset 14129  df-plt 14141  df-lub 14157  df-glb 14158  df-join 14159  df-meet 14160  df-p0 14194  df-lat 14201  df-clat 14263  df-oposet 29184  df-ol 29186  df-oml 29187  df-covers 29274  df-ats 29275  df-atl 29306  df-cvlat 29330  df-hlat 29359  df-llines 29505  df-lplanes 29506
  Copyright terms: Public domain W3C validator