Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem27 Structured version   Unicode version

Theorem dalem27 30569
Description: Lemma for dath 30606. Show that the line  G P intersects the dummy center of perspectivity  c. (Contributed by NM, 8-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalem.l  |-  .<_  =  ( le `  K )
dalem.j  |-  .\/  =  ( join `  K )
dalem.a  |-  A  =  ( Atoms `  K )
dalem.ps  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
dalem23.m  |-  ./\  =  ( meet `  K )
dalem23.o  |-  O  =  ( LPlanes `  K )
dalem23.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem23.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem23.g  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
Assertion
Ref Expression
dalem27  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
c  .<_  ( G  .\/  P ) )

Proof of Theorem dalem27
StepHypRef Expression
1 dalem23.g . . 3  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
2 dalem.ph . . . . . 6  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
32dalemkelat 30494 . . . . 5  |-  ( ph  ->  K  e.  Lat )
433ad2ant1 979 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  Lat )
52dalemkehl 30493 . . . . . 6  |-  ( ph  ->  K  e.  HL )
653ad2ant1 979 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  HL )
7 dalem.ps . . . . . . 7  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
87dalemccea 30553 . . . . . 6  |-  ( ps 
->  c  e.  A
)
983ad2ant3 981 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
c  e.  A )
102dalempea 30496 . . . . . 6  |-  ( ph  ->  P  e.  A )
11103ad2ant1 979 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  P  e.  A )
12 eqid 2438 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
13 dalem.j . . . . . 6  |-  .\/  =  ( join `  K )
14 dalem.a . . . . . 6  |-  A  =  ( Atoms `  K )
1512, 13, 14hlatjcl 30237 . . . . 5  |-  ( ( K  e.  HL  /\  c  e.  A  /\  P  e.  A )  ->  ( c  .\/  P
)  e.  ( Base `  K ) )
166, 9, 11, 15syl3anc 1185 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  P
)  e.  ( Base `  K ) )
177dalemddea 30554 . . . . . 6  |-  ( ps 
->  d  e.  A
)
18173ad2ant3 981 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
d  e.  A )
192dalemsea 30499 . . . . . 6  |-  ( ph  ->  S  e.  A )
20193ad2ant1 979 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  S  e.  A )
2112, 13, 14hlatjcl 30237 . . . . 5  |-  ( ( K  e.  HL  /\  d  e.  A  /\  S  e.  A )  ->  ( d  .\/  S
)  e.  ( Base `  K ) )
226, 18, 20, 21syl3anc 1185 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( d  .\/  S
)  e.  ( Base `  K ) )
23 dalem.l . . . . 5  |-  .<_  =  ( le `  K )
24 dalem23.m . . . . 5  |-  ./\  =  ( meet `  K )
2512, 23, 24latmle1 14510 . . . 4  |-  ( ( K  e.  Lat  /\  ( c  .\/  P
)  e.  ( Base `  K )  /\  (
d  .\/  S )  e.  ( Base `  K
) )  ->  (
( c  .\/  P
)  ./\  ( d  .\/  S ) )  .<_  ( c  .\/  P
) )
264, 16, 22, 25syl3anc 1185 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  P )  ./\  ( d  .\/  S ) )  .<_  ( c  .\/  P
) )
271, 26syl5eqbr 4248 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  .<_  ( c  .\/  P ) )
28 dalem23.o . . . 4  |-  O  =  ( LPlanes `  K )
29 dalem23.y . . . 4  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
30 dalem23.z . . . 4  |-  Z  =  ( ( S  .\/  T )  .\/  U )
312, 23, 13, 14, 7, 24, 28, 29, 30, 1dalem23 30566 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  e.  A )
322, 23, 13, 14, 28, 29dalemply 30524 . . . . 5  |-  ( ph  ->  P  .<_  Y )
33323ad2ant1 979 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  P  .<_  Y )
342, 23, 13, 14, 7, 24, 28, 29, 30, 1dalem24 30567 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  G  .<_  Y )
35 nbrne2 4233 . . . . 5  |-  ( ( P  .<_  Y  /\  -.  G  .<_  Y )  ->  P  =/=  G
)
3635necomd 2689 . . . 4  |-  ( ( P  .<_  Y  /\  -.  G  .<_  Y )  ->  G  =/=  P
)
3733, 34, 36syl2anc 644 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  =/=  P )
3823, 13, 14hlatexch2 30266 . . 3  |-  ( ( K  e.  HL  /\  ( G  e.  A  /\  c  e.  A  /\  P  e.  A
)  /\  G  =/=  P )  ->  ( G  .<_  ( c  .\/  P
)  ->  c  .<_  ( G  .\/  P ) ) )
396, 31, 9, 11, 37, 38syl131anc 1198 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( G  .<_  ( c 
.\/  P )  -> 
c  .<_  ( G  .\/  P ) ) )
4027, 39mpd 15 1  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
c  .<_  ( G  .\/  P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   Basecbs 13474   lecple 13541   joincjn 14406   meetcmee 14407   Latclat 14479   Atomscatm 30134   HLchlt 30221   LPlanesclpl 30362
This theorem is referenced by:  dalem28  30570  dalem32  30574  dalem51  30593  dalem52  30594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-undef 6546  df-riota 6552  df-poset 14408  df-plt 14420  df-lub 14436  df-glb 14437  df-join 14438  df-meet 14439  df-p0 14473  df-lat 14480  df-clat 14542  df-oposet 30047  df-ol 30049  df-oml 30050  df-covers 30137  df-ats 30138  df-atl 30169  df-cvlat 30193  df-hlat 30222  df-llines 30368  df-lplanes 30369
  Copyright terms: Public domain W3C validator