Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem27 Unicode version

Theorem dalem27 29814
Description: Lemma for dath 29851. Show that the line  G P intersects the dummy center of perspectivity  c. (Contributed by NM, 8-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalem.l  |-  .<_  =  ( le `  K )
dalem.j  |-  .\/  =  ( join `  K )
dalem.a  |-  A  =  ( Atoms `  K )
dalem.ps  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
dalem23.m  |-  ./\  =  ( meet `  K )
dalem23.o  |-  O  =  ( LPlanes `  K )
dalem23.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem23.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem23.g  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
Assertion
Ref Expression
dalem27  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
c  .<_  ( G  .\/  P ) )

Proof of Theorem dalem27
StepHypRef Expression
1 dalem23.g . . 3  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
2 dalem.ph . . . . . 6  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
32dalemkelat 29739 . . . . 5  |-  ( ph  ->  K  e.  Lat )
433ad2ant1 978 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  Lat )
52dalemkehl 29738 . . . . . 6  |-  ( ph  ->  K  e.  HL )
653ad2ant1 978 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  HL )
7 dalem.ps . . . . . . 7  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
87dalemccea 29798 . . . . . 6  |-  ( ps 
->  c  e.  A
)
983ad2ant3 980 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
c  e.  A )
102dalempea 29741 . . . . . 6  |-  ( ph  ->  P  e.  A )
11103ad2ant1 978 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  P  e.  A )
12 eqid 2388 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
13 dalem.j . . . . . 6  |-  .\/  =  ( join `  K )
14 dalem.a . . . . . 6  |-  A  =  ( Atoms `  K )
1512, 13, 14hlatjcl 29482 . . . . 5  |-  ( ( K  e.  HL  /\  c  e.  A  /\  P  e.  A )  ->  ( c  .\/  P
)  e.  ( Base `  K ) )
166, 9, 11, 15syl3anc 1184 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  P
)  e.  ( Base `  K ) )
177dalemddea 29799 . . . . . 6  |-  ( ps 
->  d  e.  A
)
18173ad2ant3 980 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
d  e.  A )
192dalemsea 29744 . . . . . 6  |-  ( ph  ->  S  e.  A )
20193ad2ant1 978 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  S  e.  A )
2112, 13, 14hlatjcl 29482 . . . . 5  |-  ( ( K  e.  HL  /\  d  e.  A  /\  S  e.  A )  ->  ( d  .\/  S
)  e.  ( Base `  K ) )
226, 18, 20, 21syl3anc 1184 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( d  .\/  S
)  e.  ( Base `  K ) )
23 dalem.l . . . . 5  |-  .<_  =  ( le `  K )
24 dalem23.m . . . . 5  |-  ./\  =  ( meet `  K )
2512, 23, 24latmle1 14433 . . . 4  |-  ( ( K  e.  Lat  /\  ( c  .\/  P
)  e.  ( Base `  K )  /\  (
d  .\/  S )  e.  ( Base `  K
) )  ->  (
( c  .\/  P
)  ./\  ( d  .\/  S ) )  .<_  ( c  .\/  P
) )
264, 16, 22, 25syl3anc 1184 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  P )  ./\  ( d  .\/  S ) )  .<_  ( c  .\/  P
) )
271, 26syl5eqbr 4187 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  .<_  ( c  .\/  P ) )
28 dalem23.o . . . 4  |-  O  =  ( LPlanes `  K )
29 dalem23.y . . . 4  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
30 dalem23.z . . . 4  |-  Z  =  ( ( S  .\/  T )  .\/  U )
312, 23, 13, 14, 7, 24, 28, 29, 30, 1dalem23 29811 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  e.  A )
322, 23, 13, 14, 28, 29dalemply 29769 . . . . 5  |-  ( ph  ->  P  .<_  Y )
33323ad2ant1 978 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  P  .<_  Y )
342, 23, 13, 14, 7, 24, 28, 29, 30, 1dalem24 29812 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  G  .<_  Y )
35 nbrne2 4172 . . . . 5  |-  ( ( P  .<_  Y  /\  -.  G  .<_  Y )  ->  P  =/=  G
)
3635necomd 2634 . . . 4  |-  ( ( P  .<_  Y  /\  -.  G  .<_  Y )  ->  G  =/=  P
)
3733, 34, 36syl2anc 643 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  =/=  P )
3823, 13, 14hlatexch2 29511 . . 3  |-  ( ( K  e.  HL  /\  ( G  e.  A  /\  c  e.  A  /\  P  e.  A
)  /\  G  =/=  P )  ->  ( G  .<_  ( c  .\/  P
)  ->  c  .<_  ( G  .\/  P ) ) )
396, 31, 9, 11, 37, 38syl131anc 1197 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( G  .<_  ( c 
.\/  P )  -> 
c  .<_  ( G  .\/  P ) ) )
4027, 39mpd 15 1  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
c  .<_  ( G  .\/  P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2551   class class class wbr 4154   ` cfv 5395  (class class class)co 6021   Basecbs 13397   lecple 13464   joincjn 14329   meetcmee 14330   Latclat 14402   Atomscatm 29379   HLchlt 29466   LPlanesclpl 29607
This theorem is referenced by:  dalem28  29815  dalem32  29819  dalem51  29838  dalem52  29839
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-undef 6480  df-riota 6486  df-poset 14331  df-plt 14343  df-lub 14359  df-glb 14360  df-join 14361  df-meet 14362  df-p0 14396  df-lat 14403  df-clat 14465  df-oposet 29292  df-ol 29294  df-oml 29295  df-covers 29382  df-ats 29383  df-atl 29414  df-cvlat 29438  df-hlat 29467  df-llines 29613  df-lplanes 29614
  Copyright terms: Public domain W3C validator