Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem37 Structured version   Unicode version

Theorem dalem37 30604
Description: Lemma for dath 30631. Analog of dalem28 30595 for  I. (Contributed by NM, 4-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalem.l  |-  .<_  =  ( le `  K )
dalem.j  |-  .\/  =  ( join `  K )
dalem.a  |-  A  =  ( Atoms `  K )
dalem.ps  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
dalem34.m  |-  ./\  =  ( meet `  K )
dalem34.o  |-  O  =  ( LPlanes `  K )
dalem34.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem34.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem34.i  |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )
Assertion
Ref Expression
dalem37  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  R  .<_  ( I  .\/  c ) )

Proof of Theorem dalem37
StepHypRef Expression
1 dalem.ph . . . 4  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
2 dalem.l . . . 4  |-  .<_  =  ( le `  K )
3 dalem.j . . . 4  |-  .\/  =  ( join `  K )
4 dalem.a . . . 4  |-  A  =  ( Atoms `  K )
5 dalem34.y . . . 4  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
6 dalem34.z . . . 4  |-  Z  =  ( ( S  .\/  T )  .\/  U )
71, 2, 3, 4, 5, 6dalemrot 30552 . . 3  |-  ( ph  ->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) ) )
873ad2ant1 979 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) ) )
91, 2, 3, 4, 5, 6dalemrotyz 30553 . . 3  |-  ( (
ph  /\  Y  =  Z )  ->  (
( Q  .\/  R
)  .\/  P )  =  ( ( T 
.\/  U )  .\/  S ) )
1093adant3 978 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( Q  .\/  R )  .\/  P )  =  ( ( T 
.\/  U )  .\/  S ) )
11 dalem.ps . . . 4  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
121, 2, 3, 4, 11, 5dalemrotps 30586 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  ( d  =/=  c  /\  -.  d  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  C  .<_  ( c  .\/  d ) ) ) )
13123adant2 977 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  ( d  =/=  c  /\  -.  d  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  C  .<_  ( c  .\/  d ) ) ) )
14 biid 229 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) )  <->  ( (
( K  e.  HL  /\  C  e.  ( Base `  K ) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A
)  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A ) )  /\  ( ( ( Q 
.\/  R )  .\/  P )  e.  O  /\  ( ( T  .\/  U )  .\/  S )  e.  O )  /\  ( ( -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
)  /\  -.  C  .<_  ( P  .\/  Q
) )  /\  ( -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S )  /\  -.  C  .<_  ( S 
.\/  T ) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U )  /\  C  .<_  ( P  .\/  S ) ) ) ) )
15 biid 229 . . 3  |-  ( ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  ( ( Q  .\/  R )  .\/  P )  /\  ( d  =/=  c  /\  -.  d  .<_  ( ( Q  .\/  R )  .\/  P )  /\  C  .<_  ( c 
.\/  d ) ) )  <->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  ( d  =/=  c  /\  -.  d  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  C  .<_  ( c  .\/  d ) ) ) )
16 dalem34.m . . 3  |-  ./\  =  ( meet `  K )
17 dalem34.o . . 3  |-  O  =  ( LPlanes `  K )
18 eqid 2442 . . 3  |-  ( ( Q  .\/  R ) 
.\/  P )  =  ( ( Q  .\/  R )  .\/  P )
19 eqid 2442 . . 3  |-  ( ( T  .\/  U ) 
.\/  S )  =  ( ( T  .\/  U )  .\/  S )
20 dalem34.i . . 3  |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )
2114, 2, 3, 4, 15, 16, 17, 18, 19, 20dalem33 30600 . 2  |-  ( ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) )  /\  (
( Q  .\/  R
)  .\/  P )  =  ( ( T 
.\/  U )  .\/  S )  /\  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  ( ( Q  .\/  R ) 
.\/  P )  /\  ( d  =/=  c  /\  -.  d  .<_  ( ( Q  .\/  R ) 
.\/  P )  /\  C  .<_  ( c  .\/  d ) ) ) )  ->  R  .<_  ( I  .\/  c ) )
228, 10, 13, 21syl3anc 1185 1  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  R  .<_  ( I  .\/  c ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1727    =/= wne 2605   class class class wbr 4237   ` cfv 5483  (class class class)co 6110   Basecbs 13500   lecple 13567   joincjn 14432   meetcmee 14433   Atomscatm 30159   HLchlt 30246   LPlanesclpl 30387
This theorem is referenced by:  dalem38  30605  dalem44  30611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-undef 6572  df-riota 6578  df-poset 14434  df-plt 14446  df-lub 14462  df-glb 14463  df-join 14464  df-meet 14465  df-p0 14499  df-lat 14506  df-clat 14568  df-oposet 30072  df-ol 30074  df-oml 30075  df-covers 30162  df-ats 30163  df-atl 30194  df-cvlat 30218  df-hlat 30247  df-llines 30393  df-lplanes 30394
  Copyright terms: Public domain W3C validator