Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem58 Unicode version

Theorem dalem58 29971
Description: Lemma for dath 29977. Analog of dalem57 29970 for  E. (Contributed by NM, 10-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalem.l  |-  .<_  =  ( le `  K )
dalem.j  |-  .\/  =  ( join `  K )
dalem.a  |-  A  =  ( Atoms `  K )
dalem.ps  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
dalem58.m  |-  ./\  =  ( meet `  K )
dalem58.o  |-  O  =  ( LPlanes `  K )
dalem58.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem58.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem58.e  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
dalem58.g  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
dalem58.h  |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )
dalem58.i  |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )
dalem58.b1  |-  B  =  ( ( ( G 
.\/  H )  .\/  I )  ./\  Y
)
Assertion
Ref Expression
dalem58  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  E  .<_  B )

Proof of Theorem dalem58
StepHypRef Expression
1 dalem.ph . . . . 5  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
2 dalem.l . . . . 5  |-  .<_  =  ( le `  K )
3 dalem.j . . . . 5  |-  .\/  =  ( join `  K )
4 dalem.a . . . . 5  |-  A  =  ( Atoms `  K )
5 dalem58.y . . . . 5  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
6 dalem58.z . . . . 5  |-  Z  =  ( ( S  .\/  T )  .\/  U )
71, 2, 3, 4, 5, 6dalemrot 29898 . . . 4  |-  ( ph  ->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) ) )
873ad2ant1 976 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) ) )
91, 2, 3, 4, 5, 6dalemrotyz 29899 . . . 4  |-  ( (
ph  /\  Y  =  Z )  ->  (
( Q  .\/  R
)  .\/  P )  =  ( ( T 
.\/  U )  .\/  S ) )
1093adant3 975 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( Q  .\/  R )  .\/  P )  =  ( ( T 
.\/  U )  .\/  S ) )
11 dalem.ps . . . . 5  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
121, 2, 3, 4, 11, 5dalemrotps 29932 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  ( d  =/=  c  /\  -.  d  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  C  .<_  ( c  .\/  d ) ) ) )
13123adant2 974 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  ( d  =/=  c  /\  -.  d  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  C  .<_  ( c  .\/  d ) ) ) )
14 biid 227 . . . 4  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) )  <->  ( (
( K  e.  HL  /\  C  e.  ( Base `  K ) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A
)  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A ) )  /\  ( ( ( Q 
.\/  R )  .\/  P )  e.  O  /\  ( ( T  .\/  U )  .\/  S )  e.  O )  /\  ( ( -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
)  /\  -.  C  .<_  ( P  .\/  Q
) )  /\  ( -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S )  /\  -.  C  .<_  ( S 
.\/  T ) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U )  /\  C  .<_  ( P  .\/  S ) ) ) ) )
15 biid 227 . . . 4  |-  ( ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  ( ( Q  .\/  R )  .\/  P )  /\  ( d  =/=  c  /\  -.  d  .<_  ( ( Q  .\/  R )  .\/  P )  /\  C  .<_  ( c 
.\/  d ) ) )  <->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  ( d  =/=  c  /\  -.  d  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  C  .<_  ( c  .\/  d ) ) ) )
16 dalem58.m . . . 4  |-  ./\  =  ( meet `  K )
17 dalem58.o . . . 4  |-  O  =  ( LPlanes `  K )
18 eqid 2358 . . . 4  |-  ( ( Q  .\/  R ) 
.\/  P )  =  ( ( Q  .\/  R )  .\/  P )
19 eqid 2358 . . . 4  |-  ( ( T  .\/  U ) 
.\/  S )  =  ( ( T  .\/  U )  .\/  S )
20 dalem58.e . . . 4  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
21 dalem58.h . . . 4  |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )
22 dalem58.i . . . 4  |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )
23 dalem58.g . . . 4  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
24 eqid 2358 . . . 4  |-  ( ( ( H  .\/  I
)  .\/  G )  ./\  ( ( Q  .\/  R )  .\/  P ) )  =  ( ( ( H  .\/  I
)  .\/  G )  ./\  ( ( Q  .\/  R )  .\/  P ) )
2514, 2, 3, 4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24dalem57 29970 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) )  /\  (
( Q  .\/  R
)  .\/  P )  =  ( ( T 
.\/  U )  .\/  S )  /\  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  ( ( Q  .\/  R ) 
.\/  P )  /\  ( d  =/=  c  /\  -.  d  .<_  ( ( Q  .\/  R ) 
.\/  P )  /\  C  .<_  ( c  .\/  d ) ) ) )  ->  E  .<_  ( ( ( H  .\/  I )  .\/  G
)  ./\  ( ( Q  .\/  R )  .\/  P ) ) )
268, 10, 13, 25syl3anc 1182 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  E  .<_  ( ( ( H  .\/  I ) 
.\/  G )  ./\  ( ( Q  .\/  R )  .\/  P ) ) )
271dalemkehl 29864 . . . . . 6  |-  ( ph  ->  K  e.  HL )
28273ad2ant1 976 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  HL )
291, 2, 3, 4, 11, 16, 17, 5, 6, 21dalem29 29942 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  H  e.  A )
301, 2, 3, 4, 11, 16, 17, 5, 6, 22dalem34 29947 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  I  e.  A )
311, 2, 3, 4, 11, 16, 17, 5, 6, 23dalem23 29937 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  e.  A )
323, 4hlatjrot 29614 . . . . 5  |-  ( ( K  e.  HL  /\  ( H  e.  A  /\  I  e.  A  /\  G  e.  A
) )  ->  (
( H  .\/  I
)  .\/  G )  =  ( ( G 
.\/  H )  .\/  I ) )
3328, 29, 30, 31, 32syl13anc 1184 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( H  .\/  I )  .\/  G
)  =  ( ( G  .\/  H ) 
.\/  I ) )
341, 3, 4dalemqrprot 29889 . . . . . 6  |-  ( ph  ->  ( ( Q  .\/  R )  .\/  P )  =  ( ( P 
.\/  Q )  .\/  R ) )
3534, 5syl6eqr 2408 . . . . 5  |-  ( ph  ->  ( ( Q  .\/  R )  .\/  P )  =  Y )
36353ad2ant1 976 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( Q  .\/  R )  .\/  P )  =  Y )
3733, 36oveq12d 5960 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( H 
.\/  I )  .\/  G )  ./\  ( ( Q  .\/  R )  .\/  P ) )  =  ( ( ( G  .\/  H )  .\/  I ) 
./\  Y ) )
38 dalem58.b1 . . 3  |-  B  =  ( ( ( G 
.\/  H )  .\/  I )  ./\  Y
)
3937, 38syl6eqr 2408 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( H 
.\/  I )  .\/  G )  ./\  ( ( Q  .\/  R )  .\/  P ) )  =  B )
4026, 39breqtrd 4126 1  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  E  .<_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   class class class wbr 4102   ` cfv 5334  (class class class)co 5942   Basecbs 13239   lecple 13306   joincjn 14171   meetcmee 14172   Atomscatm 29505   HLchlt 29592   LPlanesclpl 29733
This theorem is referenced by:  dalem59  29972  dalem60  29973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-undef 6382  df-riota 6388  df-poset 14173  df-plt 14185  df-lub 14201  df-glb 14202  df-join 14203  df-meet 14204  df-p0 14238  df-lat 14245  df-clat 14307  df-oposet 29418  df-ol 29420  df-oml 29421  df-covers 29508  df-ats 29509  df-atl 29540  df-cvlat 29564  df-hlat 29593  df-llines 29739  df-lplanes 29740  df-lvols 29741
  Copyright terms: Public domain W3C validator