Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem8 Unicode version

Theorem dalem8 30152
Description: Lemma for dath 30218. Plane  Z belongs to the 3-dimensional space. (Contributed by NM, 21-Jul-2012.)
Hypotheses
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalemc.l  |-  .<_  =  ( le `  K )
dalemc.j  |-  .\/  =  ( join `  K )
dalemc.a  |-  A  =  ( Atoms `  K )
dalem6.o  |-  O  =  ( LPlanes `  K )
dalem6.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem6.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem6.w  |-  W  =  ( Y  .\/  C
)
Assertion
Ref Expression
dalem8  |-  ( ph  ->  Z  .<_  W )

Proof of Theorem dalem8
StepHypRef Expression
1 dalem6.z . 2  |-  Z  =  ( ( S  .\/  T )  .\/  U )
2 dalema.ph . . . . 5  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
3 dalemc.l . . . . 5  |-  .<_  =  ( le `  K )
4 dalemc.j . . . . 5  |-  .\/  =  ( join `  K )
5 dalemc.a . . . . 5  |-  A  =  ( Atoms `  K )
6 dalem6.o . . . . 5  |-  O  =  ( LPlanes `  K )
7 dalem6.y . . . . 5  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
8 dalem6.w . . . . 5  |-  W  =  ( Y  .\/  C
)
92, 3, 4, 5, 6, 7, 1, 8dalem6 30150 . . . 4  |-  ( ph  ->  S  .<_  W )
102, 3, 4, 5, 6, 7, 1, 8dalem7 30151 . . . 4  |-  ( ph  ->  T  .<_  W )
112dalemkelat 30106 . . . . 5  |-  ( ph  ->  K  e.  Lat )
122, 5dalemseb 30124 . . . . 5  |-  ( ph  ->  S  e.  ( Base `  K ) )
132, 5dalemteb 30125 . . . . 5  |-  ( ph  ->  T  e.  ( Base `  K ) )
142, 6dalemyeb 30131 . . . . . . 7  |-  ( ph  ->  Y  e.  ( Base `  K ) )
152, 5dalemceb 30120 . . . . . . 7  |-  ( ph  ->  C  e.  ( Base `  K ) )
16 eqid 2404 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
1716, 4latjcl 14434 . . . . . . 7  |-  ( ( K  e.  Lat  /\  Y  e.  ( Base `  K )  /\  C  e.  ( Base `  K
) )  ->  ( Y  .\/  C )  e.  ( Base `  K
) )
1811, 14, 15, 17syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( Y  .\/  C
)  e.  ( Base `  K ) )
198, 18syl5eqel 2488 . . . . 5  |-  ( ph  ->  W  e.  ( Base `  K ) )
2016, 3, 4latjle12 14446 . . . . 5  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  T  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( S  .<_  W  /\  T  .<_  W )  <-> 
( S  .\/  T
)  .<_  W ) )
2111, 12, 13, 19, 20syl13anc 1186 . . . 4  |-  ( ph  ->  ( ( S  .<_  W  /\  T  .<_  W )  <-> 
( S  .\/  T
)  .<_  W ) )
229, 10, 21mpbi2and 888 . . 3  |-  ( ph  ->  ( S  .\/  T
)  .<_  W )
232, 3, 4, 5, 6, 7, 8dalem5 30149 . . 3  |-  ( ph  ->  U  .<_  W )
242, 4, 5dalemsjteb 30128 . . . 4  |-  ( ph  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
252, 5dalemueb 30126 . . . 4  |-  ( ph  ->  U  e.  ( Base `  K ) )
2616, 3, 4latjle12 14446 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( S  .\/  T )  e.  ( Base `  K )  /\  U  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
) )  ->  (
( ( S  .\/  T )  .<_  W  /\  U  .<_  W )  <->  ( ( S  .\/  T )  .\/  U )  .<_  W )
)
2711, 24, 25, 19, 26syl13anc 1186 . . 3  |-  ( ph  ->  ( ( ( S 
.\/  T )  .<_  W  /\  U  .<_  W )  <-> 
( ( S  .\/  T )  .\/  U ) 
.<_  W ) )
2822, 23, 27mpbi2and 888 . 2  |-  ( ph  ->  ( ( S  .\/  T )  .\/  U ) 
.<_  W )
291, 28syl5eqbr 4205 1  |-  ( ph  ->  Z  .<_  W )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   Basecbs 13424   lecple 13491   joincjn 14356   Latclat 14429   Atomscatm 29746   HLchlt 29833   LPlanesclpl 29974
This theorem is referenced by:  dalem13  30158
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981
  Copyright terms: Public domain W3C validator