Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemcceb Unicode version

Theorem dalemcceb 29878
Description: Lemma for dath 29925. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.)
Hypotheses
Ref Expression
da.ps0  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
da.a1  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
dalemcceb  |-  ( ps 
->  c  e.  ( Base `  K ) )

Proof of Theorem dalemcceb
StepHypRef Expression
1 da.ps0 . . 3  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
21dalemccea 29872 . 2  |-  ( ps 
->  c  e.  A
)
3 eqid 2283 . . 3  |-  ( Base `  K )  =  (
Base `  K )
4 da.a1 . . 3  |-  A  =  ( Atoms `  K )
53, 4atbase 29479 . 2  |-  ( c  e.  A  ->  c  e.  ( Base `  K
) )
62, 5syl 15 1  |-  ( ps 
->  c  e.  ( Base `  K ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   Atomscatm 29453
This theorem is referenced by:  dalem21  29883  dalem25  29887  dalem38  29899  dalem39  29900  dalem44  29905  dalem45  29906  dalem48  29909  dalem52  29913
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ats 29457
  Copyright terms: Public domain W3C validator