Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemcea Unicode version

Theorem dalemcea 30471
Description: Lemma for dath 30547. Frequently-used utility lemma. Here we show that  C must be an atom. This is an assumption in most presentations of Desargue's theorem; instead, we assume only the  C is a lattice element, in order to make later substitutions for  C easier. (Contributed by NM, 23-Sep-2012.)
Hypotheses
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalemc.l  |-  .<_  =  ( le `  K )
dalemc.j  |-  .\/  =  ( join `  K )
dalemc.a  |-  A  =  ( Atoms `  K )
dalem1.o  |-  O  =  ( LPlanes `  K )
dalem1.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
Assertion
Ref Expression
dalemcea  |-  ( ph  ->  C  e.  A )

Proof of Theorem dalemcea
StepHypRef Expression
1 dalema.ph . . . 4  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
21dalemkeop 30436 . . 3  |-  ( ph  ->  K  e.  OP )
3 dalemc.a . . . 4  |-  A  =  ( Atoms `  K )
41, 3dalemceb 30449 . . 3  |-  ( ph  ->  C  e.  ( Base `  K ) )
51dalemkehl 30434 . . . 4  |-  ( ph  ->  K  e.  HL )
6 dalemc.l . . . . 5  |-  .<_  =  ( le `  K )
7 dalemc.j . . . . 5  |-  .\/  =  ( join `  K )
8 dalem1.o . . . . 5  |-  O  =  ( LPlanes `  K )
9 dalem1.y . . . . 5  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
101, 6, 7, 3, 8, 9dalempjsen 30464 . . . 4  |-  ( ph  ->  ( P  .\/  S
)  e.  ( LLines `  K ) )
111dalemqea 30438 . . . . 5  |-  ( ph  ->  Q  e.  A )
121dalemtea 30441 . . . . 5  |-  ( ph  ->  T  e.  A )
131, 6, 7, 3, 8, 9dalemqnet 30463 . . . . 5  |-  ( ph  ->  Q  =/=  T )
14 eqid 2296 . . . . . 6  |-  ( LLines `  K )  =  (
LLines `  K )
157, 3, 14llni2 30323 . . . . 5  |-  ( ( ( K  e.  HL  /\  Q  e.  A  /\  T  e.  A )  /\  Q  =/=  T
)  ->  ( Q  .\/  T )  e.  (
LLines `  K ) )
165, 11, 12, 13, 15syl31anc 1185 . . . 4  |-  ( ph  ->  ( Q  .\/  T
)  e.  ( LLines `  K ) )
171, 6, 7, 3, 8, 9dalem1 30470 . . . 4  |-  ( ph  ->  ( P  .\/  S
)  =/=  ( Q 
.\/  T ) )
181dalem-clpjq 30448 . . . . . . . 8  |-  ( ph  ->  -.  C  .<_  ( P 
.\/  Q ) )
191, 7, 3dalempjqeb 30456 . . . . . . . . . . 11  |-  ( ph  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
20 eqid 2296 . . . . . . . . . . . 12  |-  ( Base `  K )  =  (
Base `  K )
21 eqid 2296 . . . . . . . . . . . 12  |-  ( 0.
`  K )  =  ( 0. `  K
)
2220, 6, 21op0le 29998 . . . . . . . . . . 11  |-  ( ( K  e.  OP  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  ( 0. `  K )  .<_  ( P  .\/  Q ) )
232, 19, 22syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( 0. `  K
)  .<_  ( P  .\/  Q ) )
24 breq1 4042 . . . . . . . . . 10  |-  ( C  =  ( 0. `  K )  ->  ( C  .<_  ( P  .\/  Q )  <->  ( 0. `  K )  .<_  ( P 
.\/  Q ) ) )
2523, 24syl5ibrcom 213 . . . . . . . . 9  |-  ( ph  ->  ( C  =  ( 0. `  K )  ->  C  .<_  ( P 
.\/  Q ) ) )
2625necon3bd 2496 . . . . . . . 8  |-  ( ph  ->  ( -.  C  .<_  ( P  .\/  Q )  ->  C  =/=  ( 0. `  K ) ) )
2718, 26mpd 14 . . . . . . 7  |-  ( ph  ->  C  =/=  ( 0.
`  K ) )
28 eqid 2296 . . . . . . . . 9  |-  ( lt
`  K )  =  ( lt `  K
)
2920, 28, 21opltn0 30002 . . . . . . . 8  |-  ( ( K  e.  OP  /\  C  e.  ( Base `  K ) )  -> 
( ( 0. `  K ) ( lt
`  K ) C  <-> 
C  =/=  ( 0.
`  K ) ) )
302, 4, 29syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( ( 0. `  K ) ( lt
`  K ) C  <-> 
C  =/=  ( 0.
`  K ) ) )
3127, 30mpbird 223 . . . . . 6  |-  ( ph  ->  ( 0. `  K
) ( lt `  K ) C )
321dalemclpjs 30445 . . . . . . 7  |-  ( ph  ->  C  .<_  ( P  .\/  S ) )
331dalemclqjt 30446 . . . . . . 7  |-  ( ph  ->  C  .<_  ( Q  .\/  T ) )
341dalemkelat 30435 . . . . . . . 8  |-  ( ph  ->  K  e.  Lat )
351dalempea 30437 . . . . . . . . 9  |-  ( ph  ->  P  e.  A )
361dalemsea 30440 . . . . . . . . 9  |-  ( ph  ->  S  e.  A )
3720, 7, 3hlatjcl 30178 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  ->  ( P  .\/  S
)  e.  ( Base `  K ) )
385, 35, 36, 37syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  ( P  .\/  S
)  e.  ( Base `  K ) )
3920, 7, 3hlatjcl 30178 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  T  e.  A )  ->  ( Q  .\/  T
)  e.  ( Base `  K ) )
405, 11, 12, 39syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  ( Q  .\/  T
)  e.  ( Base `  K ) )
41 eqid 2296 . . . . . . . . 9  |-  ( meet `  K )  =  (
meet `  K )
4220, 6, 41latlem12 14200 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( C  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  ( Q  .\/  T )  e.  (
Base `  K )
) )  ->  (
( C  .<_  ( P 
.\/  S )  /\  C  .<_  ( Q  .\/  T ) )  <->  C  .<_  ( ( P  .\/  S
) ( meet `  K
) ( Q  .\/  T ) ) ) )
4334, 4, 38, 40, 42syl13anc 1184 . . . . . . 7  |-  ( ph  ->  ( ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T ) )  <-> 
C  .<_  ( ( P 
.\/  S ) (
meet `  K )
( Q  .\/  T
) ) ) )
4432, 33, 43mpbi2and 887 . . . . . 6  |-  ( ph  ->  C  .<_  ( ( P  .\/  S ) (
meet `  K )
( Q  .\/  T
) ) )
45 opposet 29994 . . . . . . . 8  |-  ( K  e.  OP  ->  K  e.  Poset )
462, 45syl 15 . . . . . . 7  |-  ( ph  ->  K  e.  Poset )
4720, 21op0cl 29996 . . . . . . . 8  |-  ( K  e.  OP  ->  ( 0. `  K )  e.  ( Base `  K
) )
482, 47syl 15 . . . . . . 7  |-  ( ph  ->  ( 0. `  K
)  e.  ( Base `  K ) )
4920, 41latmcl 14173 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  ( Q  .\/  T )  e.  (
Base `  K )
)  ->  ( ( P  .\/  S ) (
meet `  K )
( Q  .\/  T
) )  e.  (
Base `  K )
)
5034, 38, 40, 49syl3anc 1182 . . . . . . 7  |-  ( ph  ->  ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) )  e.  (
Base `  K )
)
5120, 6, 28pltletr 14121 . . . . . . 7  |-  ( ( K  e.  Poset  /\  (
( 0. `  K
)  e.  ( Base `  K )  /\  C  e.  ( Base `  K
)  /\  ( ( P  .\/  S ) (
meet `  K )
( Q  .\/  T
) )  e.  (
Base `  K )
) )  ->  (
( ( 0. `  K ) ( lt
`  K ) C  /\  C  .<_  ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) ) )  -> 
( 0. `  K
) ( lt `  K ) ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) ) ) )
5246, 48, 4, 50, 51syl13anc 1184 . . . . . 6  |-  ( ph  ->  ( ( ( 0.
`  K ) ( lt `  K ) C  /\  C  .<_  ( ( P  .\/  S
) ( meet `  K
) ( Q  .\/  T ) ) )  -> 
( 0. `  K
) ( lt `  K ) ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) ) ) )
5331, 44, 52mp2and 660 . . . . 5  |-  ( ph  ->  ( 0. `  K
) ( lt `  K ) ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) ) )
5420, 28, 21opltn0 30002 . . . . . 6  |-  ( ( K  e.  OP  /\  ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) )  e.  (
Base `  K )
)  ->  ( ( 0. `  K ) ( lt `  K ) ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) )  <->  ( ( P  .\/  S ) (
meet `  K )
( Q  .\/  T
) )  =/=  ( 0. `  K ) ) )
552, 50, 54syl2anc 642 . . . . 5  |-  ( ph  ->  ( ( 0. `  K ) ( lt
`  K ) ( ( P  .\/  S
) ( meet `  K
) ( Q  .\/  T ) )  <->  ( ( P  .\/  S ) (
meet `  K )
( Q  .\/  T
) )  =/=  ( 0. `  K ) ) )
5653, 55mpbid 201 . . . 4  |-  ( ph  ->  ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) )  =/=  ( 0. `  K ) )
5741, 21, 3, 142llnmat 30335 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  .\/  S
)  e.  ( LLines `  K )  /\  ( Q  .\/  T )  e.  ( LLines `  K )
)  /\  ( ( P  .\/  S )  =/=  ( Q  .\/  T
)  /\  ( ( P  .\/  S ) (
meet `  K )
( Q  .\/  T
) )  =/=  ( 0. `  K ) ) )  ->  ( ( P  .\/  S ) (
meet `  K )
( Q  .\/  T
) )  e.  A
)
585, 10, 16, 17, 56, 57syl32anc 1190 . . 3  |-  ( ph  ->  ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) )  e.  A
)
5920, 6, 21, 3leat2 30106 . . 3  |-  ( ( ( K  e.  OP  /\  C  e.  ( Base `  K )  /\  (
( P  .\/  S
) ( meet `  K
) ( Q  .\/  T ) )  e.  A
)  /\  ( C  =/=  ( 0. `  K
)  /\  C  .<_  ( ( P  .\/  S
) ( meet `  K
) ( Q  .\/  T ) ) ) )  ->  C  =  ( ( P  .\/  S
) ( meet `  K
) ( Q  .\/  T ) ) )
602, 4, 58, 27, 44, 59syl32anc 1190 . 2  |-  ( ph  ->  C  =  ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) ) )
6160, 58eqeltrd 2370 1  |-  ( ph  ->  C  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   Posetcpo 14090   ltcplt 14091   joincjn 14094   meetcmee 14095   0.cp0 14159   Latclat 14167   OPcops 29984   Atomscatm 30075   HLchlt 30162   LLinesclln 30302   LPlanesclpl 30303
This theorem is referenced by:  dalem2  30472  dalem5  30478  dalem-cly  30482  dalem9  30483  dalem19  30493  dalem21  30505  dalem25  30509
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-lplanes 30310
  Copyright terms: Public domain W3C validator