Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemclccjdd Unicode version

Theorem dalemclccjdd 30499
Description: Lemma for dath 30547. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.)
Hypothesis
Ref Expression
da.ps0  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
Assertion
Ref Expression
dalemclccjdd  |-  ( ps 
->  C  .<_  ( c 
.\/  d ) )

Proof of Theorem dalemclccjdd
StepHypRef Expression
1 da.ps0 . 2  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
2 simp33 993 . 2  |-  ( ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) )  ->  C  .<_  ( c  .\/  d ) )
31, 2sylbi 187 1  |-  ( ps 
->  C  .<_  ( c 
.\/  d ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1696    =/= wne 2459   class class class wbr 4039  (class class class)co 5874
This theorem is referenced by:  dalemswapyzps  30501  dalemrotps  30502  dalem21  30505  dalem25  30509
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator