Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemdnee Structured version   Unicode version

Theorem dalemdnee 30464
Description: Lemma for dath 30534. Axis of perspectivity points  D and  E are different. (Contributed by NM, 10-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalemc.l  |-  .<_  =  ( le `  K )
dalemc.j  |-  .\/  =  ( join `  K )
dalemc.a  |-  A  =  ( Atoms `  K )
dalem3.m  |-  ./\  =  ( meet `  K )
dalem3.o  |-  O  =  ( LPlanes `  K )
dalem3.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem3.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem3.d  |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
dalem3.e  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
Assertion
Ref Expression
dalemdnee  |-  ( ph  ->  D  =/=  E )

Proof of Theorem dalemdnee
StepHypRef Expression
1 simpr 449 . . . 4  |-  ( (
ph  /\  D  =  Q )  ->  D  =  Q )
2 dalema.ph . . . . . 6  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
3 dalemc.l . . . . . 6  |-  .<_  =  ( le `  K )
4 dalemc.j . . . . . 6  |-  .\/  =  ( join `  K )
5 dalemc.a . . . . . 6  |-  A  =  ( Atoms `  K )
6 dalem3.o . . . . . 6  |-  O  =  ( LPlanes `  K )
7 dalem3.y . . . . . 6  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
82, 3, 4, 5, 6, 7dalemqnet 30450 . . . . 5  |-  ( ph  ->  Q  =/=  T )
98adantr 453 . . . 4  |-  ( (
ph  /\  D  =  Q )  ->  Q  =/=  T )
101, 9eqnetrd 2620 . . 3  |-  ( (
ph  /\  D  =  Q )  ->  D  =/=  T )
11 dalem3.m . . . 4  |-  ./\  =  ( meet `  K )
12 dalem3.z . . . 4  |-  Z  =  ( ( S  .\/  T )  .\/  U )
13 dalem3.d . . . 4  |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
14 dalem3.e . . . 4  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
152, 3, 4, 5, 11, 6, 7, 12, 13, 14dalem4 30463 . . 3  |-  ( (
ph  /\  D  =/=  T )  ->  D  =/=  E )
1610, 15syldan 458 . 2  |-  ( (
ph  /\  D  =  Q )  ->  D  =/=  E )
172, 3, 4, 5, 11, 6, 7, 12, 13, 14dalem3 30462 . 2  |-  ( (
ph  /\  D  =/=  Q )  ->  D  =/=  E )
1816, 17pm2.61dane 2683 1  |-  ( ph  ->  D  =/=  E )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2600   class class class wbr 4213   ` cfv 5455  (class class class)co 6082   Basecbs 13470   lecple 13537   joincjn 14402   meetcmee 14403   Atomscatm 30062   HLchlt 30149   LPlanesclpl 30290
This theorem is referenced by:  dalem16  30477  dalem60  30530
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-undef 6544  df-riota 6550  df-poset 14404  df-plt 14416  df-lub 14432  df-glb 14433  df-join 14434  df-meet 14435  df-p0 14469  df-lat 14476  df-clat 14538  df-oposet 29975  df-ol 29977  df-oml 29978  df-covers 30065  df-ats 30066  df-atl 30097  df-cvlat 30121  df-hlat 30150  df-llines 30296  df-lplanes 30297
  Copyright terms: Public domain W3C validator