Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemkehl Unicode version

Theorem dalemkehl 30434
Description: Lemma for dath 30547. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
Hypothesis
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
Assertion
Ref Expression
dalemkehl  |-  ( ph  ->  K  e.  HL )

Proof of Theorem dalemkehl
StepHypRef Expression
1 dalema.ph . 2  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
2 simp11l 1066 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  K  e.  HL )
31, 2sylbi 187 1  |-  ( ph  ->  K  e.  HL )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1696   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   HLchlt 30162
This theorem is referenced by:  dalemkelat  30435  dalemkeop  30436  dalempjqeb  30456  dalemsjteb  30457  dalemtjueb  30458  dalemqrprot  30459  dalempnes  30462  dalemqnet  30463  dalempjsen  30464  dalemply  30465  dalemsly  30466  dalemswapyz  30467  dalemrot  30468  dalemrotyz  30469  dalem1  30470  dalemcea  30471  dalem2  30472  dalemdea  30473  dalem3  30475  dalem4  30476  dalem5  30478  dalem-cly  30482  dalem9  30483  dalem11  30485  dalem12  30486  dalem13  30487  dalem15  30489  dalem16  30490  dalem17  30491  dalem18  30492  dalem19  30493  dalemswapyzps  30501  dalemcjden  30503  dalem21  30505  dalem22  30506  dalem23  30507  dalem24  30508  dalem25  30509  dalem27  30510  dalem28  30511  dalem38  30521  dalem39  30522  dalem41  30524  dalem42  30525  dalem43  30526  dalem44  30527  dalem45  30528  dalem51  30534  dalem52  30535  dalem54  30537  dalem55  30538  dalem56  30539  dalem57  30540  dalem58  30541  dalem59  30542  dalem60  30543
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator