Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemkelat Structured version   Unicode version

Theorem dalemkelat 30519
Description: Lemma for dath 30631. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
Hypothesis
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
Assertion
Ref Expression
dalemkelat  |-  ( ph  ->  K  e.  Lat )

Proof of Theorem dalemkelat
StepHypRef Expression
1 dalema.ph . . 3  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
21dalemkehl 30518 . 2  |-  ( ph  ->  K  e.  HL )
3 hllat 30259 . 2  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 16 1  |-  ( ph  ->  K  e.  Lat )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    e. wcel 1727   class class class wbr 4237   ` cfv 5483  (class class class)co 6110   Basecbs 13500   Latclat 14505   HLchlt 30246
This theorem is referenced by:  dalemcnes  30545  dalempnes  30546  dalemqnet  30547  dalemply  30549  dalemsly  30550  dalem1  30554  dalemcea  30555  dalem3  30559  dalem4  30560  dalem5  30562  dalem8  30565  dalem-cly  30566  dalem10  30568  dalem13  30571  dalem16  30574  dalem17  30575  dalem21  30589  dalem25  30593  dalem27  30594  dalem38  30605  dalem39  30606  dalem43  30610  dalem44  30611  dalem45  30612  dalem48  30615  dalem54  30621  dalem55  30622  dalem56  30623  dalem57  30624  dalem60  30627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-iota 5447  df-fv 5491  df-ov 6113  df-atl 30194  df-cvlat 30218  df-hlat 30247
  Copyright terms: Public domain W3C validator