Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemrot Unicode version

Theorem dalemrot 30151
Description: Lemma for dath 30230. Rotate triangles  Y  =  P Q R and  Z  =  S T U to allow reuse of analogous proofs. (Contributed by NM, 14-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalemc.l  |-  .<_  =  ( le `  K )
dalemc.j  |-  .\/  =  ( join `  K )
dalemc.a  |-  A  =  ( Atoms `  K )
dalemrot.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalemrot.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
Assertion
Ref Expression
dalemrot  |-  ( ph  ->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) ) )

Proof of Theorem dalemrot
StepHypRef Expression
1 dalema.ph . . . . 5  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
21dalemkehl 30117 . . . 4  |-  ( ph  ->  K  e.  HL )
3 dalemc.a . . . . 5  |-  A  =  ( Atoms `  K )
41, 3dalemceb 30132 . . . 4  |-  ( ph  ->  C  e.  ( Base `  K ) )
52, 4jca 519 . . 3  |-  ( ph  ->  ( K  e.  HL  /\  C  e.  ( Base `  K ) ) )
61dalemqea 30121 . . . 4  |-  ( ph  ->  Q  e.  A )
71dalemrea 30122 . . . 4  |-  ( ph  ->  R  e.  A )
81dalempea 30120 . . . 4  |-  ( ph  ->  P  e.  A )
96, 7, 83jca 1134 . . 3  |-  ( ph  ->  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A
) )
101dalemtea 30124 . . . 4  |-  ( ph  ->  T  e.  A )
111dalemuea 30125 . . . 4  |-  ( ph  ->  U  e.  A )
121dalemsea 30123 . . . 4  |-  ( ph  ->  S  e.  A )
1310, 11, 123jca 1134 . . 3  |-  ( ph  ->  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )
145, 9, 133jca 1134 . 2  |-  ( ph  ->  ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) ) )
15 dalemc.j . . . . 5  |-  .\/  =  ( join `  K )
161, 15, 3dalemqrprot 30142 . . . 4  |-  ( ph  ->  ( ( Q  .\/  R )  .\/  P )  =  ( ( P 
.\/  Q )  .\/  R ) )
17 dalemrot.y . . . . 5  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
181dalemyeo 30126 . . . . 5  |-  ( ph  ->  Y  e.  O )
1917, 18syl5eqelr 2497 . . . 4  |-  ( ph  ->  ( ( P  .\/  Q )  .\/  R )  e.  O )
2016, 19eqeltrd 2486 . . 3  |-  ( ph  ->  ( ( Q  .\/  R )  .\/  P )  e.  O )
2115, 3hlatjrot 29867 . . . . 5  |-  ( ( K  e.  HL  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  ->  (
( T  .\/  U
)  .\/  S )  =  ( ( S 
.\/  T )  .\/  U ) )
222, 10, 11, 12, 21syl13anc 1186 . . . 4  |-  ( ph  ->  ( ( T  .\/  U )  .\/  S )  =  ( ( S 
.\/  T )  .\/  U ) )
23 dalemrot.z . . . . 5  |-  Z  =  ( ( S  .\/  T )  .\/  U )
241dalemzeo 30127 . . . . 5  |-  ( ph  ->  Z  e.  O )
2523, 24syl5eqelr 2497 . . . 4  |-  ( ph  ->  ( ( S  .\/  T )  .\/  U )  e.  O )
2622, 25eqeltrd 2486 . . 3  |-  ( ph  ->  ( ( T  .\/  U )  .\/  S )  e.  O )
2720, 26jca 519 . 2  |-  ( ph  ->  ( ( ( Q 
.\/  R )  .\/  P )  e.  O  /\  ( ( T  .\/  U )  .\/  S )  e.  O ) )
28 simp312 1105 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  -.  C  .<_  ( Q  .\/  R ) )
291, 28sylbi 188 . . . 4  |-  ( ph  ->  -.  C  .<_  ( Q 
.\/  R ) )
30 simp313 1106 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  -.  C  .<_  ( R  .\/  P ) )
311, 30sylbi 188 . . . 4  |-  ( ph  ->  -.  C  .<_  ( R 
.\/  P ) )
321dalem-clpjq 30131 . . . 4  |-  ( ph  ->  -.  C  .<_  ( P 
.\/  Q ) )
3329, 31, 323jca 1134 . . 3  |-  ( ph  ->  ( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) ) )
34 simp322 1108 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  -.  C  .<_  ( T  .\/  U ) )
351, 34sylbi 188 . . . 4  |-  ( ph  ->  -.  C  .<_  ( T 
.\/  U ) )
36 simp323 1109 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  -.  C  .<_  ( U  .\/  S ) )
371, 36sylbi 188 . . . 4  |-  ( ph  ->  -.  C  .<_  ( U 
.\/  S ) )
38 simp321 1107 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  -.  C  .<_  ( S  .\/  T ) )
391, 38sylbi 188 . . . 4  |-  ( ph  ->  -.  C  .<_  ( S 
.\/  T ) )
4035, 37, 393jca 1134 . . 3  |-  ( ph  ->  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T ) ) )
411dalemclqjt 30129 . . . 4  |-  ( ph  ->  C  .<_  ( Q  .\/  T ) )
421dalemclrju 30130 . . . 4  |-  ( ph  ->  C  .<_  ( R  .\/  U ) )
431dalemclpjs 30128 . . . 4  |-  ( ph  ->  C  .<_  ( P  .\/  S ) )
4441, 42, 433jca 1134 . . 3  |-  ( ph  ->  ( C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P  .\/  S ) ) )
4533, 40, 443jca 1134 . 2  |-  ( ph  ->  ( ( -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
)  /\  -.  C  .<_  ( P  .\/  Q
) )  /\  ( -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S )  /\  -.  C  .<_  ( S 
.\/  T ) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U )  /\  C  .<_  ( P  .\/  S ) ) ) )
4614, 27, 453jca 1134 1  |-  ( ph  ->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   class class class wbr 4180   ` cfv 5421  (class class class)co 6048   Basecbs 13432   lecple 13499   joincjn 14364   Atomscatm 29758   HLchlt 29845
This theorem is referenced by:  dalemeea  30157  dalem6  30162  dalem7  30163  dalem11  30168  dalem12  30169  dalem29  30195  dalem30  30196  dalem31N  30197  dalem32  30198  dalem33  30199  dalem34  30200  dalem35  30201  dalem36  30202  dalem37  30203  dalem40  30206  dalem46  30212  dalem47  30213  dalem49  30215  dalem50  30216  dalem58  30224  dalem59  30225
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-undef 6510  df-riota 6516  df-poset 14366  df-lub 14394  df-join 14396  df-lat 14438  df-ats 29762  df-atl 29793  df-cvlat 29817  df-hlat 29846
  Copyright terms: Public domain W3C validator