Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemswapyz Unicode version

Theorem dalemswapyz 29770
Description: Lemma for dath 29850. Swap the role of planes  Y and  Z to allow reuse of analogous proofs. (Contributed by NM, 14-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalemc.l  |-  .<_  =  ( le `  K )
dalemc.j  |-  .\/  =  ( join `  K )
dalemc.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
dalemswapyz  |-  ( ph  ->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Z  e.  O  /\  Y  e.  O )  /\  ( ( -.  C  .<_  ( S  .\/  T
)  /\  -.  C  .<_  ( T  .\/  U
)  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( -.  C  .<_  ( P 
.\/  Q )  /\  -.  C  .<_  ( Q 
.\/  R )  /\  -.  C  .<_  ( R 
.\/  P ) )  /\  ( C  .<_  ( S  .\/  P )  /\  C  .<_  ( T 
.\/  Q )  /\  C  .<_  ( U  .\/  R ) ) ) ) )

Proof of Theorem dalemswapyz
StepHypRef Expression
1 dalema.ph . 2  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
2 simp11 987 . . . 4  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  ( K  e.  HL  /\  C  e.  ( Base `  K
) ) )
3 simp13 989 . . . 4  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )
4 simp12 988 . . . 4  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )
52, 3, 43jca 1134 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) ) )
6 simp2 958 . . . 4  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  ( Y  e.  O  /\  Z  e.  O ) )
76ancomd 439 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  ( Z  e.  O  /\  Y  e.  O ) )
8 simp32 994 . . . 4  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  ( -.  C  .<_  ( S  .\/  T
)  /\  -.  C  .<_  ( T  .\/  U
)  /\  -.  C  .<_  ( U  .\/  S
) ) )
9 simp31 993 . . . 4  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) ) )
101dalemclpjs 29748 . . . . . . 7  |-  ( ph  ->  C  .<_  ( P  .\/  S ) )
111dalemkehl 29737 . . . . . . . 8  |-  ( ph  ->  K  e.  HL )
121dalempea 29740 . . . . . . . 8  |-  ( ph  ->  P  e.  A )
131dalemsea 29743 . . . . . . . 8  |-  ( ph  ->  S  e.  A )
14 dalemc.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
15 dalemc.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
1614, 15hlatjcom 29482 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  ->  ( P  .\/  S
)  =  ( S 
.\/  P ) )
1711, 12, 13, 16syl3anc 1184 . . . . . . 7  |-  ( ph  ->  ( P  .\/  S
)  =  ( S 
.\/  P ) )
1810, 17breqtrd 4177 . . . . . 6  |-  ( ph  ->  C  .<_  ( S  .\/  P ) )
191dalemclqjt 29749 . . . . . . 7  |-  ( ph  ->  C  .<_  ( Q  .\/  T ) )
201dalemqea 29741 . . . . . . . 8  |-  ( ph  ->  Q  e.  A )
211dalemtea 29744 . . . . . . . 8  |-  ( ph  ->  T  e.  A )
2214, 15hlatjcom 29482 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  T  e.  A )  ->  ( Q  .\/  T
)  =  ( T 
.\/  Q ) )
2311, 20, 21, 22syl3anc 1184 . . . . . . 7  |-  ( ph  ->  ( Q  .\/  T
)  =  ( T 
.\/  Q ) )
2419, 23breqtrd 4177 . . . . . 6  |-  ( ph  ->  C  .<_  ( T  .\/  Q ) )
251dalemclrju 29750 . . . . . . 7  |-  ( ph  ->  C  .<_  ( R  .\/  U ) )
261dalemrea 29742 . . . . . . . 8  |-  ( ph  ->  R  e.  A )
271dalemuea 29745 . . . . . . . 8  |-  ( ph  ->  U  e.  A )
2814, 15hlatjcom 29482 . . . . . . . 8  |-  ( ( K  e.  HL  /\  R  e.  A  /\  U  e.  A )  ->  ( R  .\/  U
)  =  ( U 
.\/  R ) )
2911, 26, 27, 28syl3anc 1184 . . . . . . 7  |-  ( ph  ->  ( R  .\/  U
)  =  ( U 
.\/  R ) )
3025, 29breqtrd 4177 . . . . . 6  |-  ( ph  ->  C  .<_  ( U  .\/  R ) )
3118, 24, 303jca 1134 . . . . 5  |-  ( ph  ->  ( C  .<_  ( S 
.\/  P )  /\  C  .<_  ( T  .\/  Q )  /\  C  .<_  ( U  .\/  R ) ) )
321, 31sylbir 205 . . . 4  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  ( C  .<_  ( S  .\/  P )  /\  C  .<_  ( T 
.\/  Q )  /\  C  .<_  ( U  .\/  R ) ) )
338, 9, 323jca 1134 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  ( ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( -.  C  .<_  ( P 
.\/  Q )  /\  -.  C  .<_  ( Q 
.\/  R )  /\  -.  C  .<_  ( R 
.\/  P ) )  /\  ( C  .<_  ( S  .\/  P )  /\  C  .<_  ( T 
.\/  Q )  /\  C  .<_  ( U  .\/  R ) ) ) )
345, 7, 333jca 1134 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K ) )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
)  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  /\  ( Z  e.  O  /\  Y  e.  O
)  /\  ( ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( C  .<_  ( S  .\/  P )  /\  C  .<_  ( T  .\/  Q )  /\  C  .<_  ( U 
.\/  R ) ) ) ) )
351, 34sylbi 188 1  |-  ( ph  ->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Z  e.  O  /\  Y  e.  O )  /\  ( ( -.  C  .<_  ( S  .\/  T
)  /\  -.  C  .<_  ( T  .\/  U
)  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( -.  C  .<_  ( P 
.\/  Q )  /\  -.  C  .<_  ( Q 
.\/  R )  /\  -.  C  .<_  ( R 
.\/  P ) )  /\  ( C  .<_  ( S  .\/  P )  /\  C  .<_  ( T 
.\/  Q )  /\  C  .<_  ( U  .\/  R ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   Basecbs 13396   lecple 13463   joincjn 14328   Atomscatm 29378   HLchlt 29465
This theorem is referenced by:  dalem4  29779  dalem56  29842
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-join 14360  df-lat 14402  df-ats 29382  df-atl 29413  df-cvlat 29437  df-hlat 29466
  Copyright terms: Public domain W3C validator