MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  datisi Structured version   Unicode version

Theorem datisi 2392
Description: "Datisi", one of the syllogisms of Aristotelian logic. All  ph is  ps, and some  ph is  ch, therefore some  ch is  ps. (In Aristotelian notation, AII-3: MaP and MiS therefore SiP.) (Contributed by David A. Wheeler, 28-Aug-2016.)
Hypotheses
Ref Expression
datisi.maj  |-  A. x
( ph  ->  ps )
datisi.min  |-  E. x
( ph  /\  ch )
Assertion
Ref Expression
datisi  |-  E. x
( ch  /\  ps )

Proof of Theorem datisi
StepHypRef Expression
1 datisi.min . 2  |-  E. x
( ph  /\  ch )
2 simpr 449 . . 3  |-  ( (
ph  /\  ch )  ->  ch )
3 datisi.maj . . . . 5  |-  A. x
( ph  ->  ps )
43spi 1770 . . . 4  |-  ( ph  ->  ps )
54adantr 453 . . 3  |-  ( (
ph  /\  ch )  ->  ps )
62, 5jca 520 . 2  |-  ( (
ph  /\  ch )  ->  ( ch  /\  ps ) )
71, 6eximii 1588 1  |-  E. x
( ch  /\  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360   A.wal 1550   E.wex 1551
This theorem is referenced by:  ferison  2394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-11 1762
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552
  Copyright terms: Public domain W3C validator