Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  datisi Unicode version

Theorem datisi 2326
 Description: "Datisi", one of the syllogisms of Aristotelian logic. All is , and some is , therefore some is . (In Aristotelian notation, AII-3: MaP and MiS therefore SiP.) (Contributed by David A. Wheeler, 28-Aug-2016.)
Hypotheses
Ref Expression
datisi.maj
datisi.min
Assertion
Ref Expression
datisi

Proof of Theorem datisi
StepHypRef Expression
1 datisi.min . 2
2 simpr 447 . . . 4
3 datisi.maj . . . . . 6
43spi 1759 . . . . 5
54adantr 451 . . . 4
62, 5jca 518 . . 3
76eximi 1581 . 2
81, 7ax-mp 8 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 358  wal 1545  wex 1546 This theorem is referenced by:  ferison  2328 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-11 1751 This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1547
 Copyright terms: Public domain W3C validator