MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchr2sum Unicode version

Theorem dchr2sum 20512
Description: An orthogonality relation for Dirichlet characters: the sum of  X ( a )  x.  * Y ( a ) over all  a is nonzero only when  X  =  Y. Part of Theorem 6.5.2 of [Shapiro] p. 232. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchr2sum.g  |-  G  =  (DChr `  N )
dchr2sum.z  |-  Z  =  (ℤ/n `  N )
dchr2sum.d  |-  D  =  ( Base `  G
)
dchr2sum.b  |-  B  =  ( Base `  Z
)
dchr2sum.x  |-  ( ph  ->  X  e.  D )
dchr2sum.y  |-  ( ph  ->  Y  e.  D )
Assertion
Ref Expression
dchr2sum  |-  ( ph  -> 
sum_ a  e.  B  ( ( X `  a )  x.  (
* `  ( Y `  a ) ) )  =  if ( X  =  Y ,  ( phi `  N ) ,  0 ) )
Distinct variable groups:    B, a    G, a    ph, a    X, a    Y, a    Z, a
Allowed substitution hints:    D( a)    N( a)

Proof of Theorem dchr2sum
StepHypRef Expression
1 dchr2sum.g . . 3  |-  G  =  (DChr `  N )
2 dchr2sum.z . . 3  |-  Z  =  (ℤ/n `  N )
3 dchr2sum.d . . 3  |-  D  =  ( Base `  G
)
4 eqid 2283 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
5 dchr2sum.x . . . . . 6  |-  ( ph  ->  X  e.  D )
61, 3dchrrcl 20479 . . . . . 6  |-  ( X  e.  D  ->  N  e.  NN )
75, 6syl 15 . . . . 5  |-  ( ph  ->  N  e.  NN )
81dchrabl 20493 . . . . 5  |-  ( N  e.  NN  ->  G  e.  Abel )
9 ablgrp 15094 . . . . 5  |-  ( G  e.  Abel  ->  G  e. 
Grp )
107, 8, 93syl 18 . . . 4  |-  ( ph  ->  G  e.  Grp )
11 dchr2sum.y . . . 4  |-  ( ph  ->  Y  e.  D )
12 eqid 2283 . . . . 5  |-  ( -g `  G )  =  (
-g `  G )
133, 12grpsubcl 14546 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  D  /\  Y  e.  D )  ->  ( X ( -g `  G ) Y )  e.  D )
1410, 5, 11, 13syl3anc 1182 . . 3  |-  ( ph  ->  ( X ( -g `  G ) Y )  e.  D )
15 dchr2sum.b . . 3  |-  B  =  ( Base `  Z
)
161, 2, 3, 4, 14, 15dchrsum 20508 . 2  |-  ( ph  -> 
sum_ a  e.  B  ( ( X (
-g `  G ) Y ) `  a
)  =  if ( ( X ( -g `  G ) Y )  =  ( 0g `  G ) ,  ( phi `  N ) ,  0 ) )
175adantr 451 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  X  e.  D )
1811adantr 451 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  Y  e.  D )
19 eqid 2283 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
20 eqid 2283 . . . . . . . 8  |-  ( inv g `  G )  =  ( inv g `  G )
213, 19, 20, 12grpsubval 14525 . . . . . . 7  |-  ( ( X  e.  D  /\  Y  e.  D )  ->  ( X ( -g `  G ) Y )  =  ( X ( +g  `  G ) ( ( inv g `  G ) `  Y
) ) )
2217, 18, 21syl2anc 642 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  ( X ( -g `  G
) Y )  =  ( X ( +g  `  G ) ( ( inv g `  G
) `  Y )
) )
237adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  B )  ->  N  e.  NN )
2423, 8, 93syl 18 . . . . . . . 8  |-  ( (
ph  /\  a  e.  B )  ->  G  e.  Grp )
253, 20grpinvcl 14527 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  Y  e.  D )  ->  ( ( inv g `  G ) `  Y
)  e.  D )
2624, 18, 25syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  (
( inv g `  G ) `  Y
)  e.  D )
271, 2, 3, 19, 17, 26dchrmul 20487 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  ( X ( +g  `  G
) ( ( inv g `  G ) `
 Y ) )  =  ( X  o F  x.  ( ( inv g `  G ) `
 Y ) ) )
2822, 27eqtrd 2315 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  ( X ( -g `  G
) Y )  =  ( X  o F  x.  ( ( inv g `  G ) `
 Y ) ) )
2928fveq1d 5527 . . . 4  |-  ( (
ph  /\  a  e.  B )  ->  (
( X ( -g `  G ) Y ) `
 a )  =  ( ( X  o F  x.  ( ( inv g `  G ) `
 Y ) ) `
 a ) )
301, 2, 3, 15, 17dchrf 20481 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  X : B --> CC )
31 ffn 5389 . . . . . 6  |-  ( X : B --> CC  ->  X  Fn  B )
3230, 31syl 15 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  X  Fn  B )
331, 2, 3, 15, 26dchrf 20481 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  (
( inv g `  G ) `  Y
) : B --> CC )
34 ffn 5389 . . . . . 6  |-  ( ( ( inv g `  G ) `  Y
) : B --> CC  ->  ( ( inv g `  G ) `  Y
)  Fn  B )
3533, 34syl 15 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  (
( inv g `  G ) `  Y
)  Fn  B )
36 fvex 5539 . . . . . . 7  |-  ( Base `  Z )  e.  _V
3715, 36eqeltri 2353 . . . . . 6  |-  B  e. 
_V
3837a1i 10 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  B  e.  _V )
39 simpr 447 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  a  e.  B )
40 fnfvof 6090 . . . . 5  |-  ( ( ( X  Fn  B  /\  ( ( inv g `  G ) `  Y
)  Fn  B )  /\  ( B  e. 
_V  /\  a  e.  B ) )  -> 
( ( X  o F  x.  ( ( inv g `  G ) `
 Y ) ) `
 a )  =  ( ( X `  a )  x.  (
( ( inv g `  G ) `  Y
) `  a )
) )
4132, 35, 38, 39, 40syl22anc 1183 . . . 4  |-  ( (
ph  /\  a  e.  B )  ->  (
( X  o F  x.  ( ( inv g `  G ) `
 Y ) ) `
 a )  =  ( ( X `  a )  x.  (
( ( inv g `  G ) `  Y
) `  a )
) )
421, 3, 18, 20dchrinv 20500 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  (
( inv g `  G ) `  Y
)  =  ( *  o.  Y ) )
4342fveq1d 5527 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  (
( ( inv g `  G ) `  Y
) `  a )  =  ( ( *  o.  Y ) `  a ) )
441, 2, 3, 15, 18dchrf 20481 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  Y : B --> CC )
45 fvco3 5596 . . . . . . 7  |-  ( ( Y : B --> CC  /\  a  e.  B )  ->  ( ( *  o.  Y ) `  a
)  =  ( * `
 ( Y `  a ) ) )
4644, 39, 45syl2anc 642 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  (
( *  o.  Y
) `  a )  =  ( * `  ( Y `  a ) ) )
4743, 46eqtrd 2315 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  (
( ( inv g `  G ) `  Y
) `  a )  =  ( * `  ( Y `  a ) ) )
4847oveq2d 5874 . . . 4  |-  ( (
ph  /\  a  e.  B )  ->  (
( X `  a
)  x.  ( ( ( inv g `  G ) `  Y
) `  a )
)  =  ( ( X `  a )  x.  ( * `  ( Y `  a ) ) ) )
4929, 41, 483eqtrd 2319 . . 3  |-  ( (
ph  /\  a  e.  B )  ->  (
( X ( -g `  G ) Y ) `
 a )  =  ( ( X `  a )  x.  (
* `  ( Y `  a ) ) ) )
5049sumeq2dv 12176 . 2  |-  ( ph  -> 
sum_ a  e.  B  ( ( X (
-g `  G ) Y ) `  a
)  =  sum_ a  e.  B  ( ( X `  a )  x.  ( * `  ( Y `  a )
) ) )
513, 4, 12grpsubeq0 14552 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  D  /\  Y  e.  D )  ->  ( ( X (
-g `  G ) Y )  =  ( 0g `  G )  <-> 
X  =  Y ) )
5210, 5, 11, 51syl3anc 1182 . . 3  |-  ( ph  ->  ( ( X (
-g `  G ) Y )  =  ( 0g `  G )  <-> 
X  =  Y ) )
5352ifbid 3583 . 2  |-  ( ph  ->  if ( ( X ( -g `  G
) Y )  =  ( 0g `  G
) ,  ( phi `  N ) ,  0 )  =  if ( X  =  Y , 
( phi `  N
) ,  0 ) )
5416, 50, 533eqtr3d 2323 1  |-  ( ph  -> 
sum_ a  e.  B  ( ( X `  a )  x.  (
* `  ( Y `  a ) ) )  =  if ( X  =  Y ,  ( phi `  N ) ,  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788   ifcif 3565    o. ccom 4693    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858    o Fcof 6076   CCcc 8735   0cc0 8737    x. cmul 8742   NNcn 9746   *ccj 11581   sum_csu 12158   phicphi 12832   Basecbs 13148   +g cplusg 13208   0gc0g 13400   Grpcgrp 14362   inv gcminusg 14363   -gcsg 14365   Abelcabel 15090  ℤ/nczn 16454  DChrcdchr 20471
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-ec 6662  df-qs 6666  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-pi 12354  df-dvds 12532  df-gcd 12686  df-phi 12834  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-divs 13412  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-nsg 14619  df-eqg 14620  df-ghm 14681  df-cntz 14793  df-od 14844  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-dvr 15465  df-rnghom 15496  df-drng 15514  df-subrg 15543  df-lmod 15629  df-lss 15690  df-lsp 15729  df-sra 15925  df-rgmod 15926  df-lidl 15927  df-rsp 15928  df-2idl 15984  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-zrh 16455  df-zn 16458  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217  df-log 19914  df-cxp 19915  df-dchr 20472
  Copyright terms: Public domain W3C validator