MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrabl Unicode version

Theorem dchrabl 20716
Description: The set of Dirichlet characters is an Abelian group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
dchrabl.g  |-  G  =  (DChr `  N )
Assertion
Ref Expression
dchrabl  |-  ( N  e.  NN  ->  G  e.  Abel )

Proof of Theorem dchrabl
Dummy variables  x  a  b  c  k 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2367 . 2  |-  ( N  e.  NN  ->  ( Base `  G )  =  ( Base `  G
) )
2 eqidd 2367 . 2  |-  ( N  e.  NN  ->  ( +g  `  G )  =  ( +g  `  G
) )
3 dchrabl.g . . . 4  |-  G  =  (DChr `  N )
4 eqid 2366 . . . 4  |-  (ℤ/n `  N
)  =  (ℤ/n `  N
)
5 eqid 2366 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
6 eqid 2366 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
7 simp2 957 . . . 4  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  x  e.  ( Base `  G
) )
8 simp3 958 . . . 4  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  y  e.  ( Base `  G
) )
93, 4, 5, 6, 7, 8dchrmulcl 20711 . . 3  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
x ( +g  `  G
) y )  e.  ( Base `  G
) )
10 fvex 5646 . . . . . . 7  |-  ( Base `  (ℤ/n `  N ) )  e. 
_V
1110a1i 10 . . . . . 6  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( Base `  (ℤ/n `  N ) )  e. 
_V )
12 eqid 2366 . . . . . . . 8  |-  ( Base `  (ℤ/n `  N ) )  =  ( Base `  (ℤ/n `  N
) )
133, 4, 5, 12, 7dchrf 20704 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  x : ( Base `  (ℤ/n `  N
) ) --> CC )
14133adant3r3 1163 . . . . . 6  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  ->  x : ( Base `  (ℤ/n `  N
) ) --> CC )
153, 4, 5, 12, 8dchrf 20704 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  y : ( Base `  (ℤ/n `  N
) ) --> CC )
16153adant3r3 1163 . . . . . 6  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
y : ( Base `  (ℤ/n `  N ) ) --> CC )
17 simpr3 964 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
z  e.  ( Base `  G ) )
183, 4, 5, 12, 17dchrf 20704 . . . . . 6  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
z : ( Base `  (ℤ/n `  N ) ) --> CC )
19 mulass 8972 . . . . . . 7  |-  ( ( a  e.  CC  /\  b  e.  CC  /\  c  e.  CC )  ->  (
( a  x.  b
)  x.  c )  =  ( a  x.  ( b  x.  c
) ) )
2019adantl 452 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G ) ) )  /\  ( a  e.  CC  /\  b  e.  CC  /\  c  e.  CC ) )  -> 
( ( a  x.  b )  x.  c
)  =  ( a  x.  ( b  x.  c ) ) )
2111, 14, 16, 18, 20caofass 6238 . . . . 5  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( ( x  o F  x.  y )  o F  x.  z
)  =  ( x  o F  x.  (
y  o F  x.  z ) ) )
22 simpr1 962 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  ->  x  e.  ( Base `  G ) )
23 simpr2 963 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
y  e.  ( Base `  G ) )
243, 4, 5, 6, 22, 23dchrmul 20710 . . . . . 6  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( x ( +g  `  G ) y )  =  ( x  o F  x.  y ) )
2524oveq1d 5996 . . . . 5  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( ( x ( +g  `  G ) y )  o F  x.  z )  =  ( ( x  o F  x.  y )  o F  x.  z
) )
263, 4, 5, 6, 23, 17dchrmul 20710 . . . . . 6  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( y ( +g  `  G ) z )  =  ( y  o F  x.  z ) )
2726oveq2d 5997 . . . . 5  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( x  o F  x.  ( y ( +g  `  G ) z ) )  =  ( x  o F  x.  ( y  o F  x.  z ) ) )
2821, 25, 273eqtr4d 2408 . . . 4  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( ( x ( +g  `  G ) y )  o F  x.  z )  =  ( x  o F  x.  ( y ( +g  `  G ) z ) ) )
2993adant3r3 1163 . . . . 5  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( x ( +g  `  G ) y )  e.  ( Base `  G
) )
303, 4, 5, 6, 29, 17dchrmul 20710 . . . 4  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( ( x ( +g  `  G ) y ) ( +g  `  G ) z )  =  ( ( x ( +g  `  G
) y )  o F  x.  z ) )
313, 4, 5, 6, 23, 17dchrmulcl 20711 . . . . 5  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( y ( +g  `  G ) z )  e.  ( Base `  G
) )
323, 4, 5, 6, 22, 31dchrmul 20710 . . . 4  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( x ( +g  `  G ) ( y ( +g  `  G
) z ) )  =  ( x  o F  x.  ( y ( +g  `  G
) z ) ) )
3328, 30, 323eqtr4d 2408 . . 3  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( ( x ( +g  `  G ) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G ) ( y ( +g  `  G ) z ) ) )
34 eqid 2366 . . . 4  |-  (Unit `  (ℤ/n `  N ) )  =  (Unit `  (ℤ/n `  N ) )
35 eqid 2366 . . . 4  |-  ( k  e.  ( Base `  (ℤ/n `  N
) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  1 ,  0 ) )  =  ( k  e.  ( Base `  (ℤ/n `  N
) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  1 ,  0 ) )
36 id 19 . . . 4  |-  ( N  e.  NN  ->  N  e.  NN )
373, 4, 5, 12, 34, 35, 36dchr1cl 20713 . . 3  |-  ( N  e.  NN  ->  (
k  e.  ( Base `  (ℤ/n `  N ) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  1 ,  0 ) )  e.  ( Base `  G ) )
38 simpr 447 . . . 4  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G ) )  ->  x  e.  ( Base `  G ) )
393, 4, 5, 12, 34, 35, 6, 38dchrmulid2 20714 . . 3  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G ) )  -> 
( ( k  e.  ( Base `  (ℤ/n `  N
) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  1 ,  0 ) ) ( +g  `  G
) x )  =  x )
40 eqid 2366 . . . . 5  |-  ( k  e.  ( Base `  (ℤ/n `  N
) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  ( 1  /  (
x `  k )
) ,  0 ) )  =  ( k  e.  ( Base `  (ℤ/n `  N
) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  ( 1  /  (
x `  k )
) ,  0 ) )
413, 4, 5, 12, 34, 35, 6, 38, 40dchrinvcl 20715 . . . 4  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G ) )  -> 
( ( k  e.  ( Base `  (ℤ/n `  N
) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  ( 1  /  (
x `  k )
) ,  0 ) )  e.  ( Base `  G )  /\  (
( k  e.  (
Base `  (ℤ/n `  N ) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  ( 1  /  (
x `  k )
) ,  0 ) ) ( +g  `  G
) x )  =  ( k  e.  (
Base `  (ℤ/n `  N ) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  1 ,  0 ) ) ) )
4241simpld 445 . . 3  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G ) )  -> 
( k  e.  (
Base `  (ℤ/n `  N ) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  ( 1  /  (
x `  k )
) ,  0 ) )  e.  ( Base `  G ) )
4341simprd 449 . . 3  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G ) )  -> 
( ( k  e.  ( Base `  (ℤ/n `  N
) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  ( 1  /  (
x `  k )
) ,  0 ) ) ( +g  `  G
) x )  =  ( k  e.  (
Base `  (ℤ/n `  N ) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  1 ,  0 ) ) )
441, 2, 9, 33, 37, 39, 42, 43isgrpd 14717 . 2  |-  ( N  e.  NN  ->  G  e.  Grp )
4510a1i 10 . . . 4  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  ( Base `  (ℤ/n `  N ) )  e. 
_V )
46 mulcom 8970 . . . . 5  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( a  x.  b
)  =  ( b  x.  a ) )
4746adantl 452 . . . 4  |-  ( ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  (
a  e.  CC  /\  b  e.  CC )
)  ->  ( a  x.  b )  =  ( b  x.  a ) )
4845, 13, 15, 47caofcom 6236 . . 3  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
x  o F  x.  y )  =  ( y  o F  x.  x ) )
493, 4, 5, 6, 7, 8dchrmul 20710 . . 3  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
x ( +g  `  G
) y )  =  ( x  o F  x.  y ) )
503, 4, 5, 6, 8, 7dchrmul 20710 . . 3  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
y ( +g  `  G
) x )  =  ( y  o F  x.  x ) )
5148, 49, 503eqtr4d 2408 . 2  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) )
521, 2, 44, 51isabld 15312 1  |-  ( N  e.  NN  ->  G  e.  Abel )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   _Vcvv 2873   ifcif 3654    e. cmpt 4179   -->wf 5354   ` cfv 5358  (class class class)co 5981    o Fcof 6203   CCcc 8882   0cc0 8884   1c1 8885    x. cmul 8889    / cdiv 9570   NNcn 9893   Basecbs 13356   +g cplusg 13416   Abelcabel 15300  Unitcui 15631  ℤ/nczn 16671  DChrcdchr 20694
This theorem is referenced by:  dchr1  20719  dchrinv  20723  dchr1re  20725  dchrpt  20729  dchrsum2  20730  sumdchr2  20732  dchrhash  20733  dchr2sum  20735  rpvmasumlem  20859  rpvmasum2  20884  dchrisum0re  20885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-addf 8963  ax-mulf 8964
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-of 6205  df-1st 6249  df-2nd 6250  df-tpos 6376  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-oadd 6625  df-er 6802  df-ec 6804  df-qs 6808  df-map 6917  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-sup 7341  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-div 9571  df-nn 9894  df-2 9951  df-3 9952  df-4 9953  df-5 9954  df-6 9955  df-7 9956  df-8 9957  df-9 9958  df-10 9959  df-n0 10115  df-z 10176  df-dec 10276  df-uz 10382  df-fz 10936  df-struct 13358  df-ndx 13359  df-slot 13360  df-base 13361  df-sets 13362  df-ress 13363  df-plusg 13429  df-mulr 13430  df-starv 13431  df-sca 13432  df-vsca 13433  df-tset 13435  df-ple 13436  df-ds 13438  df-unif 13439  df-0g 13614  df-imas 13621  df-divs 13622  df-mnd 14577  df-mhm 14625  df-grp 14699  df-minusg 14700  df-sbg 14701  df-subg 14828  df-nsg 14829  df-eqg 14830  df-cmn 15301  df-abl 15302  df-mgp 15536  df-rng 15550  df-cring 15551  df-ur 15552  df-oppr 15615  df-dvdsr 15633  df-unit 15634  df-invr 15664  df-subrg 15753  df-lmod 15839  df-lss 15900  df-lsp 15939  df-sra 16135  df-rgmod 16136  df-lidl 16137  df-rsp 16138  df-2idl 16194  df-cnfld 16594  df-zn 16675  df-dchr 20695
  Copyright terms: Public domain W3C validator