MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas2 Structured version   Unicode version

Theorem dchrelbas2 21013
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/nℤ to the multiplicative monoid of  CC, which is zero off the group of units of ℤ/nℤ. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g  |-  G  =  (DChr `  N )
dchrval.z  |-  Z  =  (ℤ/n `  N )
dchrval.b  |-  B  =  ( Base `  Z
)
dchrval.u  |-  U  =  (Unit `  Z )
dchrval.n  |-  ( ph  ->  N  e.  NN )
dchrbas.b  |-  D  =  ( Base `  G
)
Assertion
Ref Expression
dchrelbas2  |-  ( ph  ->  ( X  e.  D  <->  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) ) )
Distinct variable groups:    x, B    x, N    x, U    ph, x    x, X    x, Z
Allowed substitution hints:    D( x)    G( x)

Proof of Theorem dchrelbas2
StepHypRef Expression
1 dchrval.g . . 3  |-  G  =  (DChr `  N )
2 dchrval.z . . 3  |-  Z  =  (ℤ/n `  N )
3 dchrval.b . . 3  |-  B  =  ( Base `  Z
)
4 dchrval.u . . 3  |-  U  =  (Unit `  Z )
5 dchrval.n . . 3  |-  ( ph  ->  N  e.  NN )
6 dchrbas.b . . 3  |-  D  =  ( Base `  G
)
71, 2, 3, 4, 5, 6dchrelbas 21012 . 2  |-  ( ph  ->  ( X  e.  D  <->  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  /\  ( ( B  \  U )  X. 
{ 0 } ) 
C_  X ) ) )
8 eqid 2435 . . . . . . . . . . 11  |-  (mulGrp `  Z )  =  (mulGrp `  Z )
98, 3mgpbas 15646 . . . . . . . . . 10  |-  B  =  ( Base `  (mulGrp `  Z ) )
10 eqid 2435 . . . . . . . . . . 11  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
11 cnfldbas 16699 . . . . . . . . . . 11  |-  CC  =  ( Base ` fld )
1210, 11mgpbas 15646 . . . . . . . . . 10  |-  CC  =  ( Base `  (mulGrp ` fld ) )
139, 12mhmf 14735 . . . . . . . . 9  |-  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  ->  X : B --> CC )
1413adantl 453 . . . . . . . 8  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  ->  X : B --> CC )
15 ffun 5585 . . . . . . . 8  |-  ( X : B --> CC  ->  Fun 
X )
1614, 15syl 16 . . . . . . 7  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  ->  Fun  X )
17 funssres 5485 . . . . . . 7  |-  ( ( Fun  X  /\  (
( B  \  U
)  X.  { 0 } )  C_  X
)  ->  ( X  |` 
dom  ( ( B 
\  U )  X. 
{ 0 } ) )  =  ( ( B  \  U )  X.  { 0 } ) )
1816, 17sylan 458 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) ) )  /\  ( ( B  \  U )  X.  {
0 } )  C_  X )  ->  ( X  |`  dom  ( ( B  \  U )  X.  { 0 } ) )  =  ( ( B  \  U
)  X.  { 0 } ) )
19 simpr 448 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) ) )  /\  ( X  |`  dom  (
( B  \  U
)  X.  { 0 } ) )  =  ( ( B  \  U )  X.  {
0 } ) )  ->  ( X  |`  dom  ( ( B  \  U )  X.  {
0 } ) )  =  ( ( B 
\  U )  X. 
{ 0 } ) )
20 resss 5162 . . . . . . 7  |-  ( X  |`  dom  ( ( B 
\  U )  X. 
{ 0 } ) )  C_  X
2119, 20syl6eqssr 3391 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) ) )  /\  ( X  |`  dom  (
( B  \  U
)  X.  { 0 } ) )  =  ( ( B  \  U )  X.  {
0 } ) )  ->  ( ( B 
\  U )  X. 
{ 0 } ) 
C_  X )
2218, 21impbida 806 . . . . 5  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( ( ( B 
\  U )  X. 
{ 0 } ) 
C_  X  <->  ( X  |` 
dom  ( ( B 
\  U )  X. 
{ 0 } ) )  =  ( ( B  \  U )  X.  { 0 } ) ) )
23 0cn 9076 . . . . . . . . 9  |-  0  e.  CC
24 fconst6g 5624 . . . . . . . . 9  |-  ( 0  e.  CC  ->  (
( B  \  U
)  X.  { 0 } ) : ( B  \  U ) --> CC )
2523, 24mp1i 12 . . . . . . . 8  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( ( B  \  U )  X.  {
0 } ) : ( B  \  U
) --> CC )
26 fdm 5587 . . . . . . . 8  |-  ( ( ( B  \  U
)  X.  { 0 } ) : ( B  \  U ) --> CC  ->  dom  ( ( B  \  U )  X.  { 0 } )  =  ( B 
\  U ) )
2725, 26syl 16 . . . . . . 7  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  ->  dom  ( ( B  \  U )  X.  {
0 } )  =  ( B  \  U
) )
2827reseq2d 5138 . . . . . 6  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( X  |`  dom  (
( B  \  U
)  X.  { 0 } ) )  =  ( X  |`  ( B  \  U ) ) )
2928eqeq1d 2443 . . . . 5  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( ( X  |`  dom  ( ( B  \  U )  X.  {
0 } ) )  =  ( ( B 
\  U )  X. 
{ 0 } )  <-> 
( X  |`  ( B  \  U ) )  =  ( ( B 
\  U )  X. 
{ 0 } ) ) )
3022, 29bitrd 245 . . . 4  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( ( ( B 
\  U )  X. 
{ 0 } ) 
C_  X  <->  ( X  |`  ( B  \  U
) )  =  ( ( B  \  U
)  X.  { 0 } ) ) )
31 difss 3466 . . . . . . . 8  |-  ( B 
\  U )  C_  B
32 fssres 5602 . . . . . . . 8  |-  ( ( X : B --> CC  /\  ( B  \  U ) 
C_  B )  -> 
( X  |`  ( B  \  U ) ) : ( B  \  U ) --> CC )
3314, 31, 32sylancl 644 . . . . . . 7  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( X  |`  ( B  \  U ) ) : ( B  \  U ) --> CC )
34 ffn 5583 . . . . . . 7  |-  ( ( X  |`  ( B  \  U ) ) : ( B  \  U
) --> CC  ->  ( X  |`  ( B  \  U ) )  Fn  ( B  \  U
) )
3533, 34syl 16 . . . . . 6  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( X  |`  ( B  \  U ) )  Fn  ( B  \  U ) )
36 ffn 5583 . . . . . . 7  |-  ( ( ( B  \  U
)  X.  { 0 } ) : ( B  \  U ) --> CC  ->  ( ( B  \  U )  X. 
{ 0 } )  Fn  ( B  \  U ) )
3725, 36syl 16 . . . . . 6  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( ( B  \  U )  X.  {
0 } )  Fn  ( B  \  U
) )
38 eqfnfv 5819 . . . . . 6  |-  ( ( ( X  |`  ( B  \  U ) )  Fn  ( B  \  U )  /\  (
( B  \  U
)  X.  { 0 } )  Fn  ( B  \  U ) )  ->  ( ( X  |`  ( B  \  U
) )  =  ( ( B  \  U
)  X.  { 0 } )  <->  A. x  e.  ( B  \  U
) ( ( X  |`  ( B  \  U
) ) `  x
)  =  ( ( ( B  \  U
)  X.  { 0 } ) `  x
) ) )
3935, 37, 38syl2anc 643 . . . . 5  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( ( X  |`  ( B  \  U ) )  =  ( ( B  \  U )  X.  { 0 } )  <->  A. x  e.  ( B  \  U ) ( ( X  |`  ( B  \  U ) ) `  x )  =  ( ( ( B  \  U )  X.  { 0 } ) `  x ) ) )
40 fvres 5737 . . . . . . . 8  |-  ( x  e.  ( B  \  U )  ->  (
( X  |`  ( B  \  U ) ) `
 x )  =  ( X `  x
) )
41 c0ex 9077 . . . . . . . . 9  |-  0  e.  _V
4241fvconst2 5939 . . . . . . . 8  |-  ( x  e.  ( B  \  U )  ->  (
( ( B  \  U )  X.  {
0 } ) `  x )  =  0 )
4340, 42eqeq12d 2449 . . . . . . 7  |-  ( x  e.  ( B  \  U )  ->  (
( ( X  |`  ( B  \  U ) ) `  x )  =  ( ( ( B  \  U )  X.  { 0 } ) `  x )  <-> 
( X `  x
)  =  0 ) )
4443ralbiia 2729 . . . . . 6  |-  ( A. x  e.  ( B  \  U ) ( ( X  |`  ( B  \  U ) ) `  x )  =  ( ( ( B  \  U )  X.  {
0 } ) `  x )  <->  A. x  e.  ( B  \  U
) ( X `  x )  =  0 )
45 eldif 3322 . . . . . . . . 9  |-  ( x  e.  ( B  \  U )  <->  ( x  e.  B  /\  -.  x  e.  U ) )
4645imbi1i 316 . . . . . . . 8  |-  ( ( x  e.  ( B 
\  U )  -> 
( X `  x
)  =  0 )  <-> 
( ( x  e.  B  /\  -.  x  e.  U )  ->  ( X `  x )  =  0 ) )
47 impexp 434 . . . . . . . 8  |-  ( ( ( x  e.  B  /\  -.  x  e.  U
)  ->  ( X `  x )  =  0 )  <->  ( x  e.  B  ->  ( -.  x  e.  U  ->  ( X `  x )  =  0 ) ) )
48 con1b 324 . . . . . . . . . 10  |-  ( ( -.  x  e.  U  ->  ( X `  x
)  =  0 )  <-> 
( -.  ( X `
 x )  =  0  ->  x  e.  U ) )
49 df-ne 2600 . . . . . . . . . . 11  |-  ( ( X `  x )  =/=  0  <->  -.  ( X `  x )  =  0 )
5049imbi1i 316 . . . . . . . . . 10  |-  ( ( ( X `  x
)  =/=  0  ->  x  e.  U )  <->  ( -.  ( X `  x )  =  0  ->  x  e.  U
) )
5148, 50bitr4i 244 . . . . . . . . 9  |-  ( ( -.  x  e.  U  ->  ( X `  x
)  =  0 )  <-> 
( ( X `  x )  =/=  0  ->  x  e.  U ) )
5251imbi2i 304 . . . . . . . 8  |-  ( ( x  e.  B  -> 
( -.  x  e.  U  ->  ( X `  x )  =  0 ) )  <->  ( x  e.  B  ->  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) )
5346, 47, 523bitri 263 . . . . . . 7  |-  ( ( x  e.  ( B 
\  U )  -> 
( X `  x
)  =  0 )  <-> 
( x  e.  B  ->  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) )
5453ralbii2 2725 . . . . . 6  |-  ( A. x  e.  ( B  \  U ) ( X `
 x )  =  0  <->  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) )
5544, 54bitri 241 . . . . 5  |-  ( A. x  e.  ( B  \  U ) ( ( X  |`  ( B  \  U ) ) `  x )  =  ( ( ( B  \  U )  X.  {
0 } ) `  x )  <->  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) )
5639, 55syl6bb 253 . . . 4  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( ( X  |`  ( B  \  U ) )  =  ( ( B  \  U )  X.  { 0 } )  <->  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) )
5730, 56bitrd 245 . . 3  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( ( ( B 
\  U )  X. 
{ 0 } ) 
C_  X  <->  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) )
5857pm5.32da 623 . 2  |-  ( ph  ->  ( ( X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  /\  (
( B  \  U
)  X.  { 0 } )  C_  X
)  <->  ( X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  /\  A. x  e.  B  (
( X `  x
)  =/=  0  ->  x  e.  U )
) ) )
597, 58bitrd 245 1  |-  ( ph  ->  ( X  e.  D  <->  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697    \ cdif 3309    C_ wss 3312   {csn 3806    X. cxp 4868   dom cdm 4870    |` cres 4872   Fun wfun 5440    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073   CCcc 8980   0cc0 8982   NNcn 9992   Basecbs 13461   MndHom cmhm 14728  mulGrpcmgp 15640  Unitcui 15736  ℂfldccnfld 16695  ℤ/nczn 16773  DChrcdchr 21008
This theorem is referenced by:  dchrelbas3  21014  dchrelbas4  21019  dchrmulcl  21025  dchrn0  21026  dchrmulid2  21028
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-fz 11036  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-plusg 13534  df-mulr 13535  df-starv 13536  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-mhm 14730  df-mgp 15641  df-cnfld 16696  df-dchr 21009
  Copyright terms: Public domain W3C validator