MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas2 Unicode version

Theorem dchrelbas2 20492
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/nℤ to the multiplicative monoid of  CC, which is zero off the group of units of ℤ/nℤ. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g  |-  G  =  (DChr `  N )
dchrval.z  |-  Z  =  (ℤ/n `  N )
dchrval.b  |-  B  =  ( Base `  Z
)
dchrval.u  |-  U  =  (Unit `  Z )
dchrval.n  |-  ( ph  ->  N  e.  NN )
dchrbas.b  |-  D  =  ( Base `  G
)
Assertion
Ref Expression
dchrelbas2  |-  ( ph  ->  ( X  e.  D  <->  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) ) )
Distinct variable groups:    x, B    x, N    x, U    ph, x    x, X    x, Z
Allowed substitution hints:    D( x)    G( x)

Proof of Theorem dchrelbas2
StepHypRef Expression
1 dchrval.g . . 3  |-  G  =  (DChr `  N )
2 dchrval.z . . 3  |-  Z  =  (ℤ/n `  N )
3 dchrval.b . . 3  |-  B  =  ( Base `  Z
)
4 dchrval.u . . 3  |-  U  =  (Unit `  Z )
5 dchrval.n . . 3  |-  ( ph  ->  N  e.  NN )
6 dchrbas.b . . 3  |-  D  =  ( Base `  G
)
71, 2, 3, 4, 5, 6dchrelbas 20491 . 2  |-  ( ph  ->  ( X  e.  D  <->  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  /\  ( ( B  \  U )  X. 
{ 0 } ) 
C_  X ) ) )
8 eqid 2296 . . . . . . . . . . 11  |-  (mulGrp `  Z )  =  (mulGrp `  Z )
98, 3mgpbas 15347 . . . . . . . . . 10  |-  B  =  ( Base `  (mulGrp `  Z ) )
10 eqid 2296 . . . . . . . . . . 11  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
11 cnfldbas 16399 . . . . . . . . . . 11  |-  CC  =  ( Base ` fld )
1210, 11mgpbas 15347 . . . . . . . . . 10  |-  CC  =  ( Base `  (mulGrp ` fld ) )
139, 12mhmf 14436 . . . . . . . . 9  |-  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  ->  X : B --> CC )
1413adantl 452 . . . . . . . 8  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  ->  X : B --> CC )
15 ffun 5407 . . . . . . . 8  |-  ( X : B --> CC  ->  Fun 
X )
1614, 15syl 15 . . . . . . 7  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  ->  Fun  X )
17 funssres 5310 . . . . . . 7  |-  ( ( Fun  X  /\  (
( B  \  U
)  X.  { 0 } )  C_  X
)  ->  ( X  |` 
dom  ( ( B 
\  U )  X. 
{ 0 } ) )  =  ( ( B  \  U )  X.  { 0 } ) )
1816, 17sylan 457 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) ) )  /\  ( ( B  \  U )  X.  {
0 } )  C_  X )  ->  ( X  |`  dom  ( ( B  \  U )  X.  { 0 } ) )  =  ( ( B  \  U
)  X.  { 0 } ) )
19 resss 4995 . . . . . . 7  |-  ( X  |`  dom  ( ( B 
\  U )  X. 
{ 0 } ) )  C_  X
20 simpr 447 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) ) )  /\  ( X  |`  dom  (
( B  \  U
)  X.  { 0 } ) )  =  ( ( B  \  U )  X.  {
0 } ) )  ->  ( X  |`  dom  ( ( B  \  U )  X.  {
0 } ) )  =  ( ( B 
\  U )  X. 
{ 0 } ) )
2120sseq1d 3218 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) ) )  /\  ( X  |`  dom  (
( B  \  U
)  X.  { 0 } ) )  =  ( ( B  \  U )  X.  {
0 } ) )  ->  ( ( X  |`  dom  ( ( B 
\  U )  X. 
{ 0 } ) )  C_  X  <->  ( ( B  \  U )  X. 
{ 0 } ) 
C_  X ) )
2219, 21mpbii 202 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) ) )  /\  ( X  |`  dom  (
( B  \  U
)  X.  { 0 } ) )  =  ( ( B  \  U )  X.  {
0 } ) )  ->  ( ( B 
\  U )  X. 
{ 0 } ) 
C_  X )
2318, 22impbida 805 . . . . 5  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( ( ( B 
\  U )  X. 
{ 0 } ) 
C_  X  <->  ( X  |` 
dom  ( ( B 
\  U )  X. 
{ 0 } ) )  =  ( ( B  \  U )  X.  { 0 } ) ) )
24 0cn 8847 . . . . . . . . 9  |-  0  e.  CC
25 fconst6g 5446 . . . . . . . . 9  |-  ( 0  e.  CC  ->  (
( B  \  U
)  X.  { 0 } ) : ( B  \  U ) --> CC )
2624, 25mp1i 11 . . . . . . . 8  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( ( B  \  U )  X.  {
0 } ) : ( B  \  U
) --> CC )
27 fdm 5409 . . . . . . . 8  |-  ( ( ( B  \  U
)  X.  { 0 } ) : ( B  \  U ) --> CC  ->  dom  ( ( B  \  U )  X.  { 0 } )  =  ( B 
\  U ) )
2826, 27syl 15 . . . . . . 7  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  ->  dom  ( ( B  \  U )  X.  {
0 } )  =  ( B  \  U
) )
2928reseq2d 4971 . . . . . 6  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( X  |`  dom  (
( B  \  U
)  X.  { 0 } ) )  =  ( X  |`  ( B  \  U ) ) )
3029eqeq1d 2304 . . . . 5  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( ( X  |`  dom  ( ( B  \  U )  X.  {
0 } ) )  =  ( ( B 
\  U )  X. 
{ 0 } )  <-> 
( X  |`  ( B  \  U ) )  =  ( ( B 
\  U )  X. 
{ 0 } ) ) )
3123, 30bitrd 244 . . . 4  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( ( ( B 
\  U )  X. 
{ 0 } ) 
C_  X  <->  ( X  |`  ( B  \  U
) )  =  ( ( B  \  U
)  X.  { 0 } ) ) )
32 difss 3316 . . . . . . . 8  |-  ( B 
\  U )  C_  B
33 fssres 5424 . . . . . . . 8  |-  ( ( X : B --> CC  /\  ( B  \  U ) 
C_  B )  -> 
( X  |`  ( B  \  U ) ) : ( B  \  U ) --> CC )
3414, 32, 33sylancl 643 . . . . . . 7  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( X  |`  ( B  \  U ) ) : ( B  \  U ) --> CC )
35 ffn 5405 . . . . . . 7  |-  ( ( X  |`  ( B  \  U ) ) : ( B  \  U
) --> CC  ->  ( X  |`  ( B  \  U ) )  Fn  ( B  \  U
) )
3634, 35syl 15 . . . . . 6  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( X  |`  ( B  \  U ) )  Fn  ( B  \  U ) )
37 ffn 5405 . . . . . . 7  |-  ( ( ( B  \  U
)  X.  { 0 } ) : ( B  \  U ) --> CC  ->  ( ( B  \  U )  X. 
{ 0 } )  Fn  ( B  \  U ) )
3826, 37syl 15 . . . . . 6  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( ( B  \  U )  X.  {
0 } )  Fn  ( B  \  U
) )
39 eqfnfv 5638 . . . . . 6  |-  ( ( ( X  |`  ( B  \  U ) )  Fn  ( B  \  U )  /\  (
( B  \  U
)  X.  { 0 } )  Fn  ( B  \  U ) )  ->  ( ( X  |`  ( B  \  U
) )  =  ( ( B  \  U
)  X.  { 0 } )  <->  A. x  e.  ( B  \  U
) ( ( X  |`  ( B  \  U
) ) `  x
)  =  ( ( ( B  \  U
)  X.  { 0 } ) `  x
) ) )
4036, 38, 39syl2anc 642 . . . . 5  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( ( X  |`  ( B  \  U ) )  =  ( ( B  \  U )  X.  { 0 } )  <->  A. x  e.  ( B  \  U ) ( ( X  |`  ( B  \  U ) ) `  x )  =  ( ( ( B  \  U )  X.  { 0 } ) `  x ) ) )
41 fvres 5558 . . . . . . . 8  |-  ( x  e.  ( B  \  U )  ->  (
( X  |`  ( B  \  U ) ) `
 x )  =  ( X `  x
) )
42 c0ex 8848 . . . . . . . . 9  |-  0  e.  _V
4342fvconst2 5745 . . . . . . . 8  |-  ( x  e.  ( B  \  U )  ->  (
( ( B  \  U )  X.  {
0 } ) `  x )  =  0 )
4441, 43eqeq12d 2310 . . . . . . 7  |-  ( x  e.  ( B  \  U )  ->  (
( ( X  |`  ( B  \  U ) ) `  x )  =  ( ( ( B  \  U )  X.  { 0 } ) `  x )  <-> 
( X `  x
)  =  0 ) )
4544ralbiia 2588 . . . . . 6  |-  ( A. x  e.  ( B  \  U ) ( ( X  |`  ( B  \  U ) ) `  x )  =  ( ( ( B  \  U )  X.  {
0 } ) `  x )  <->  A. x  e.  ( B  \  U
) ( X `  x )  =  0 )
46 eldif 3175 . . . . . . . . 9  |-  ( x  e.  ( B  \  U )  <->  ( x  e.  B  /\  -.  x  e.  U ) )
4746imbi1i 315 . . . . . . . 8  |-  ( ( x  e.  ( B 
\  U )  -> 
( X `  x
)  =  0 )  <-> 
( ( x  e.  B  /\  -.  x  e.  U )  ->  ( X `  x )  =  0 ) )
48 impexp 433 . . . . . . . 8  |-  ( ( ( x  e.  B  /\  -.  x  e.  U
)  ->  ( X `  x )  =  0 )  <->  ( x  e.  B  ->  ( -.  x  e.  U  ->  ( X `  x )  =  0 ) ) )
49 con1b 323 . . . . . . . . . 10  |-  ( ( -.  x  e.  U  ->  ( X `  x
)  =  0 )  <-> 
( -.  ( X `
 x )  =  0  ->  x  e.  U ) )
50 df-ne 2461 . . . . . . . . . . 11  |-  ( ( X `  x )  =/=  0  <->  -.  ( X `  x )  =  0 )
5150imbi1i 315 . . . . . . . . . 10  |-  ( ( ( X `  x
)  =/=  0  ->  x  e.  U )  <->  ( -.  ( X `  x )  =  0  ->  x  e.  U
) )
5249, 51bitr4i 243 . . . . . . . . 9  |-  ( ( -.  x  e.  U  ->  ( X `  x
)  =  0 )  <-> 
( ( X `  x )  =/=  0  ->  x  e.  U ) )
5352imbi2i 303 . . . . . . . 8  |-  ( ( x  e.  B  -> 
( -.  x  e.  U  ->  ( X `  x )  =  0 ) )  <->  ( x  e.  B  ->  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) )
5447, 48, 533bitri 262 . . . . . . 7  |-  ( ( x  e.  ( B 
\  U )  -> 
( X `  x
)  =  0 )  <-> 
( x  e.  B  ->  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) )
5554ralbii2 2584 . . . . . 6  |-  ( A. x  e.  ( B  \  U ) ( X `
 x )  =  0  <->  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) )
5645, 55bitri 240 . . . . 5  |-  ( A. x  e.  ( B  \  U ) ( ( X  |`  ( B  \  U ) ) `  x )  =  ( ( ( B  \  U )  X.  {
0 } ) `  x )  <->  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) )
5740, 56syl6bb 252 . . . 4  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( ( X  |`  ( B  \  U ) )  =  ( ( B  \  U )  X.  { 0 } )  <->  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) )
5831, 57bitrd 244 . . 3  |-  ( (
ph  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )  -> 
( ( ( B 
\  U )  X. 
{ 0 } ) 
C_  X  <->  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) )
5958pm5.32da 622 . 2  |-  ( ph  ->  ( ( X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  /\  (
( B  \  U
)  X.  { 0 } )  C_  X
)  <->  ( X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  /\  A. x  e.  B  (
( X `  x
)  =/=  0  ->  x  e.  U )
) ) )
607, 59bitrd 244 1  |-  ( ph  ->  ( X  e.  D  <->  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556    \ cdif 3162    C_ wss 3165   {csn 3653    X. cxp 4703   dom cdm 4705    |` cres 4707   Fun wfun 5265    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   0cc0 8753   NNcn 9762   Basecbs 13164   MndHom cmhm 14429  mulGrpcmgp 15341  Unitcui 15437  ℂfldccnfld 16393  ℤ/nczn 16470  DChrcdchr 20487
This theorem is referenced by:  dchrelbas3  20493  dchrelbas4  20498  dchrmulcl  20504  dchrn0  20505  dchrmulid2  20507
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-plusg 13237  df-mulr 13238  df-starv 13239  df-tset 13243  df-ple 13244  df-ds 13246  df-mhm 14431  df-mgp 15342  df-cnfld 16394  df-dchr 20488
  Copyright terms: Public domain W3C validator