MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchreq Unicode version

Theorem dchreq 20513
Description: A Dirichlet character is determined by its values on the unit group. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrresb.g  |-  G  =  (DChr `  N )
dchrresb.z  |-  Z  =  (ℤ/n `  N )
dchrresb.b  |-  D  =  ( Base `  G
)
dchrresb.u  |-  U  =  (Unit `  Z )
dchrresb.x  |-  ( ph  ->  X  e.  D )
dchrresb.Y  |-  ( ph  ->  Y  e.  D )
Assertion
Ref Expression
dchreq  |-  ( ph  ->  ( X  =  Y  <->  A. k  e.  U  ( X `  k )  =  ( Y `  k ) ) )
Distinct variable groups:    ph, k    U, k    k, X    k, Y    k, Z
Allowed substitution hints:    D( k)    G( k)    N( k)

Proof of Theorem dchreq
StepHypRef Expression
1 dchrresb.g . . . . . 6  |-  G  =  (DChr `  N )
2 dchrresb.z . . . . . 6  |-  Z  =  (ℤ/n `  N )
3 dchrresb.b . . . . . 6  |-  D  =  ( Base `  G
)
4 eqid 2296 . . . . . 6  |-  ( Base `  Z )  =  (
Base `  Z )
5 dchrresb.x . . . . . 6  |-  ( ph  ->  X  e.  D )
61, 2, 3, 4, 5dchrf 20497 . . . . 5  |-  ( ph  ->  X : ( Base `  Z ) --> CC )
7 ffn 5405 . . . . 5  |-  ( X : ( Base `  Z
) --> CC  ->  X  Fn  ( Base `  Z
) )
86, 7syl 15 . . . 4  |-  ( ph  ->  X  Fn  ( Base `  Z ) )
9 dchrresb.Y . . . . . 6  |-  ( ph  ->  Y  e.  D )
101, 2, 3, 4, 9dchrf 20497 . . . . 5  |-  ( ph  ->  Y : ( Base `  Z ) --> CC )
11 ffn 5405 . . . . 5  |-  ( Y : ( Base `  Z
) --> CC  ->  Y  Fn  ( Base `  Z
) )
1210, 11syl 15 . . . 4  |-  ( ph  ->  Y  Fn  ( Base `  Z ) )
13 eqfnfv 5638 . . . 4  |-  ( ( X  Fn  ( Base `  Z )  /\  Y  Fn  ( Base `  Z
) )  ->  ( X  =  Y  <->  A. k  e.  ( Base `  Z
) ( X `  k )  =  ( Y `  k ) ) )
148, 12, 13syl2anc 642 . . 3  |-  ( ph  ->  ( X  =  Y  <->  A. k  e.  ( Base `  Z ) ( X `  k )  =  ( Y `  k ) ) )
15 dchrresb.u . . . . . . 7  |-  U  =  (Unit `  Z )
164, 15unitss 15458 . . . . . 6  |-  U  C_  ( Base `  Z )
17 undif 3547 . . . . . 6  |-  ( U 
C_  ( Base `  Z
)  <->  ( U  u.  ( ( Base `  Z
)  \  U )
)  =  ( Base `  Z ) )
1816, 17mpbi 199 . . . . 5  |-  ( U  u.  ( ( Base `  Z )  \  U
) )  =  (
Base `  Z )
1918raleqi 2753 . . . 4  |-  ( A. k  e.  ( U  u.  ( ( Base `  Z
)  \  U )
) ( X `  k )  =  ( Y `  k )  <->  A. k  e.  ( Base `  Z ) ( X `  k )  =  ( Y `  k ) )
20 ralunb 3369 . . . 4  |-  ( A. k  e.  ( U  u.  ( ( Base `  Z
)  \  U )
) ( X `  k )  =  ( Y `  k )  <-> 
( A. k  e.  U  ( X `  k )  =  ( Y `  k )  /\  A. k  e.  ( ( Base `  Z
)  \  U )
( X `  k
)  =  ( Y `
 k ) ) )
2119, 20bitr3i 242 . . 3  |-  ( A. k  e.  ( Base `  Z ) ( X `
 k )  =  ( Y `  k
)  <->  ( A. k  e.  U  ( X `  k )  =  ( Y `  k )  /\  A. k  e.  ( ( Base `  Z
)  \  U )
( X `  k
)  =  ( Y `
 k ) ) )
2214, 21syl6bb 252 . 2  |-  ( ph  ->  ( X  =  Y  <-> 
( A. k  e.  U  ( X `  k )  =  ( Y `  k )  /\  A. k  e.  ( ( Base `  Z
)  \  U )
( X `  k
)  =  ( Y `
 k ) ) ) )
23 eldif 3175 . . . . . 6  |-  ( k  e.  ( ( Base `  Z )  \  U
)  <->  ( k  e.  ( Base `  Z
)  /\  -.  k  e.  U ) )
245adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( Base `  Z )
)  ->  X  e.  D )
25 simpr 447 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( Base `  Z )
)  ->  k  e.  ( Base `  Z )
)
261, 2, 3, 4, 15, 24, 25dchrn0 20505 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( Base `  Z )
)  ->  ( ( X `  k )  =/=  0  <->  k  e.  U
) )
2726biimpd 198 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( Base `  Z )
)  ->  ( ( X `  k )  =/=  0  ->  k  e.  U ) )
2827necon1bd 2527 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( Base `  Z )
)  ->  ( -.  k  e.  U  ->  ( X `  k )  =  0 ) )
2928impr 602 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  Z
)  /\  -.  k  e.  U ) )  -> 
( X `  k
)  =  0 )
3023, 29sylan2b 461 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( Base `  Z
)  \  U )
)  ->  ( X `  k )  =  0 )
319adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( Base `  Z )
)  ->  Y  e.  D )
321, 2, 3, 4, 15, 31, 25dchrn0 20505 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( Base `  Z )
)  ->  ( ( Y `  k )  =/=  0  <->  k  e.  U
) )
3332biimpd 198 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( Base `  Z )
)  ->  ( ( Y `  k )  =/=  0  ->  k  e.  U ) )
3433necon1bd 2527 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( Base `  Z )
)  ->  ( -.  k  e.  U  ->  ( Y `  k )  =  0 ) )
3534impr 602 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  Z
)  /\  -.  k  e.  U ) )  -> 
( Y `  k
)  =  0 )
3623, 35sylan2b 461 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( Base `  Z
)  \  U )
)  ->  ( Y `  k )  =  0 )
3730, 36eqtr4d 2331 . . . 4  |-  ( (
ph  /\  k  e.  ( ( Base `  Z
)  \  U )
)  ->  ( X `  k )  =  ( Y `  k ) )
3837ralrimiva 2639 . . 3  |-  ( ph  ->  A. k  e.  ( ( Base `  Z
)  \  U )
( X `  k
)  =  ( Y `
 k ) )
3938biantrud 493 . 2  |-  ( ph  ->  ( A. k  e.  U  ( X `  k )  =  ( Y `  k )  <-> 
( A. k  e.  U  ( X `  k )  =  ( Y `  k )  /\  A. k  e.  ( ( Base `  Z
)  \  U )
( X `  k
)  =  ( Y `
 k ) ) ) )
4022, 39bitr4d 247 1  |-  ( ph  ->  ( X  =  Y  <->  A. k  e.  U  ( X `  k )  =  ( Y `  k ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556    \ cdif 3162    u. cun 3163    C_ wss 3165    Fn wfn 5266   -->wf 5267   ` cfv 5271   CCcc 8751   0cc0 8753   Basecbs 13164  Unitcui 15437  ℤ/nczn 16470  DChrcdchr 20487
This theorem is referenced by:  dchrresb  20514  dchrinv  20516  dchrsum2  20523
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-tpos 6250  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-ec 6678  df-qs 6682  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-0g 13420  df-imas 13427  df-divs 13428  df-mnd 14383  df-mhm 14431  df-grp 14505  df-minusg 14506  df-sbg 14507  df-subg 14634  df-nsg 14635  df-eqg 14636  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-cring 15357  df-ur 15358  df-oppr 15421  df-dvdsr 15439  df-unit 15440  df-invr 15470  df-subrg 15559  df-lmod 15645  df-lss 15706  df-lsp 15745  df-sra 15941  df-rgmod 15942  df-lidl 15943  df-rsp 15944  df-2idl 16000  df-cnfld 16394  df-zn 16474  df-dchr 20488
  Copyright terms: Public domain W3C validator