MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrinv Unicode version

Theorem dchrinv 20516
Description: The inverse of a Dirichlet character is the conjugate (which is also the multiplicative inverse, because the values of  X are unimodular). (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrabs.g  |-  G  =  (DChr `  N )
dchrabs.d  |-  D  =  ( Base `  G
)
dchrabs.x  |-  ( ph  ->  X  e.  D )
dchrinv.i  |-  I  =  ( inv g `  G )
Assertion
Ref Expression
dchrinv  |-  ( ph  ->  ( I `  X
)  =  ( *  o.  X ) )

Proof of Theorem dchrinv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrabs.g . . . . . . . 8  |-  G  =  (DChr `  N )
2 eqid 2296 . . . . . . . 8  |-  (ℤ/n `  N
)  =  (ℤ/n `  N
)
3 dchrabs.d . . . . . . . 8  |-  D  =  ( Base `  G
)
4 eqid 2296 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
5 dchrabs.x . . . . . . . 8  |-  ( ph  ->  X  e.  D )
6 cjf 11605 . . . . . . . . . 10  |-  * : CC --> CC
7 eqid 2296 . . . . . . . . . . 11  |-  ( Base `  (ℤ/n `  N ) )  =  ( Base `  (ℤ/n `  N
) )
81, 2, 3, 7, 5dchrf 20497 . . . . . . . . . 10  |-  ( ph  ->  X : ( Base `  (ℤ/n `  N ) ) --> CC )
9 fco 5414 . . . . . . . . . 10  |-  ( ( * : CC --> CC  /\  X : ( Base `  (ℤ/n `  N
) ) --> CC )  ->  ( *  o.  X ) : (
Base `  (ℤ/n `  N ) ) --> CC )
106, 8, 9sylancr 644 . . . . . . . . 9  |-  ( ph  ->  ( *  o.  X
) : ( Base `  (ℤ/n `  N ) ) --> CC )
11 eqid 2296 . . . . . . . . . . . . . . . . . . . . 21  |-  (Unit `  (ℤ/n `  N ) )  =  (Unit `  (ℤ/n `  N ) )
121, 3dchrrcl 20495 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( X  e.  D  ->  N  e.  NN )
135, 12syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  N  e.  NN )
141, 2, 7, 11, 13, 3dchrelbas3 20493 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( X  e.  D  <->  ( X : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  ( A. x  e.  (Unit `  (ℤ/n `  N ) ) A. y  e.  (Unit `  (ℤ/n `  N
) ) ( X `
 ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) )  /\  ( X `  ( 1r
`  (ℤ/n `  N ) ) )  =  1  /\  A. x  e.  ( Base `  (ℤ/n `  N ) ) ( ( X `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) ) ) ) )
155, 14mpbid 201 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( X : (
Base `  (ℤ/n `  N ) ) --> CC 
/\  ( A. x  e.  (Unit `  (ℤ/n `  N ) ) A. y  e.  (Unit `  (ℤ/n `  N
) ) ( X `
 ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) )  /\  ( X `  ( 1r
`  (ℤ/n `  N ) ) )  =  1  /\  A. x  e.  ( Base `  (ℤ/n `  N ) ) ( ( X `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) ) ) )
1615simprd 449 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( A. x  e.  (Unit `  (ℤ/n `  N ) ) A. y  e.  (Unit `  (ℤ/n `  N
) ) ( X `
 ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) )  /\  ( X `  ( 1r
`  (ℤ/n `  N ) ) )  =  1  /\  A. x  e.  ( Base `  (ℤ/n `  N ) ) ( ( X `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) ) )
1716simp1d 967 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. x  e.  (Unit `  (ℤ/n `  N ) ) A. y  e.  (Unit `  (ℤ/n `  N
) ) ( X `
 ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) )
1817r19.21bi 2654 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  A. y  e.  (Unit `  (ℤ/n `  N ) ) ( X `  ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) )
1918r19.21bi 2654 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  /\  y  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( X `  ( x ( .r
`  (ℤ/n `  N ) ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) )
2019anasss 628 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( X `  ( x ( .r
`  (ℤ/n `  N ) ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) )
2120fveq2d 5545 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( * `  ( X `  ( x ( .r `  (ℤ/n `  N
) ) y ) ) )  =  ( * `  ( ( X `  x )  x.  ( X `  y ) ) ) )
228adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  X : (
Base `  (ℤ/n `  N ) ) --> CC )
237, 11unitss 15458 . . . . . . . . . . . . . . . 16  |-  (Unit `  (ℤ/n `  N ) )  C_  ( Base `  (ℤ/n `  N ) )
24 simprl 732 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  x  e.  (Unit `  (ℤ/n `  N ) ) )
2523, 24sseldi 3191 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  x  e.  (
Base `  (ℤ/n `  N ) ) )
26 ffvelrn 5679 . . . . . . . . . . . . . . 15  |-  ( ( X : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  x  e.  (
Base `  (ℤ/n `  N ) ) )  ->  ( X `  x )  e.  CC )
2722, 25, 26syl2anc 642 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( X `  x )  e.  CC )
28 simprr 733 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  y  e.  (Unit `  (ℤ/n `  N ) ) )
2923, 28sseldi 3191 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  y  e.  (
Base `  (ℤ/n `  N ) ) )
30 ffvelrn 5679 . . . . . . . . . . . . . . 15  |-  ( ( X : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  y  e.  (
Base `  (ℤ/n `  N ) ) )  ->  ( X `  y )  e.  CC )
3122, 29, 30syl2anc 642 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( X `  y )  e.  CC )
3227, 31cjmuld 11722 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( * `  ( ( X `  x )  x.  ( X `  y )
) )  =  ( ( * `  ( X `  x )
)  x.  ( * `
 ( X `  y ) ) ) )
3321, 32eqtrd 2328 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( * `  ( X `  ( x ( .r `  (ℤ/n `  N
) ) y ) ) )  =  ( ( * `  ( X `  x )
)  x.  ( * `
 ( X `  y ) ) ) )
3413nnnn0d 10034 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  NN0 )
352zncrng 16514 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN0  ->  (ℤ/n `  N
)  e.  CRing )
36 crngrng 15367 . . . . . . . . . . . . . . . 16  |-  ( (ℤ/n `  N )  e.  CRing  -> 
(ℤ/n `  N )  e.  Ring )
3734, 35, 363syl 18 . . . . . . . . . . . . . . 15  |-  ( ph  ->  (ℤ/n `  N )  e.  Ring )
3837adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  (ℤ/n `  N )  e.  Ring )
39 eqid 2296 . . . . . . . . . . . . . . 15  |-  ( .r
`  (ℤ/n `  N ) )  =  ( .r `  (ℤ/n `  N
) )
407, 39rngcl 15370 . . . . . . . . . . . . . 14  |-  ( ( (ℤ/n `  N )  e.  Ring  /\  x  e.  ( Base `  (ℤ/n `  N ) )  /\  y  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( x ( .r `  (ℤ/n `  N
) ) y )  e.  ( Base `  (ℤ/n `  N
) ) )
4138, 25, 29, 40syl3anc 1182 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( x ( .r `  (ℤ/n `  N
) ) y )  e.  ( Base `  (ℤ/n `  N
) ) )
42 fvco3 5612 . . . . . . . . . . . . 13  |-  ( ( X : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  ( x ( .r `  (ℤ/n `  N
) ) y )  e.  ( Base `  (ℤ/n `  N
) ) )  -> 
( ( *  o.  X ) `  (
x ( .r `  (ℤ/n `  N ) ) y ) )  =  ( * `  ( X `
 ( x ( .r `  (ℤ/n `  N
) ) y ) ) ) )
4322, 41, 42syl2anc 642 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( ( *  o.  X ) `  ( x ( .r
`  (ℤ/n `  N ) ) y ) )  =  ( * `  ( X `
 ( x ( .r `  (ℤ/n `  N
) ) y ) ) ) )
44 fvco3 5612 . . . . . . . . . . . . . 14  |-  ( ( X : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  x  e.  (
Base `  (ℤ/n `  N ) ) )  ->  ( ( *  o.  X ) `  x )  =  ( * `  ( X `
 x ) ) )
4522, 25, 44syl2anc 642 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( ( *  o.  X ) `  x )  =  ( * `  ( X `
 x ) ) )
46 fvco3 5612 . . . . . . . . . . . . . 14  |-  ( ( X : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  y  e.  (
Base `  (ℤ/n `  N ) ) )  ->  ( ( *  o.  X ) `  y )  =  ( * `  ( X `
 y ) ) )
4722, 29, 46syl2anc 642 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( ( *  o.  X ) `  y )  =  ( * `  ( X `
 y ) ) )
4845, 47oveq12d 5892 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( ( ( *  o.  X ) `
 x )  x.  ( ( *  o.  X ) `  y
) )  =  ( ( * `  ( X `  x )
)  x.  ( * `
 ( X `  y ) ) ) )
4933, 43, 483eqtr4d 2338 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( ( *  o.  X ) `  ( x ( .r
`  (ℤ/n `  N ) ) y ) )  =  ( ( ( *  o.  X ) `  x
)  x.  ( ( *  o.  X ) `
 y ) ) )
5049ralrimivva 2648 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  (Unit `  (ℤ/n `  N ) ) A. y  e.  (Unit `  (ℤ/n `  N
) ) ( ( *  o.  X ) `
 ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( ( *  o.  X
) `  x )  x.  ( ( *  o.  X ) `  y
) ) )
51 eqid 2296 . . . . . . . . . . . . . 14  |-  ( 1r
`  (ℤ/n `  N ) )  =  ( 1r `  (ℤ/n `  N
) )
527, 51rngidcl 15377 . . . . . . . . . . . . 13  |-  ( (ℤ/n `  N )  e.  Ring  -> 
( 1r `  (ℤ/n `  N
) )  e.  (
Base `  (ℤ/n `  N ) ) )
5337, 52syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1r `  (ℤ/n `  N
) )  e.  (
Base `  (ℤ/n `  N ) ) )
54 fvco3 5612 . . . . . . . . . . . 12  |-  ( ( X : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  ( 1r `  (ℤ/n `  N ) )  e.  ( Base `  (ℤ/n `  N
) ) )  -> 
( ( *  o.  X ) `  ( 1r `  (ℤ/n `  N ) ) )  =  ( * `  ( X `  ( 1r
`  (ℤ/n `  N ) ) ) ) )
558, 53, 54syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  ( ( *  o.  X ) `  ( 1r `  (ℤ/n `  N ) ) )  =  ( * `  ( X `  ( 1r
`  (ℤ/n `  N ) ) ) ) )
5616simp2d 968 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X `  ( 1r `  (ℤ/n `  N ) ) )  =  1 )
5756fveq2d 5545 . . . . . . . . . . . 12  |-  ( ph  ->  ( * `  ( X `  ( 1r `  (ℤ/n `  N ) ) ) )  =  ( * `
 1 ) )
58 1re 8853 . . . . . . . . . . . . 13  |-  1  e.  RR
59 cjre 11640 . . . . . . . . . . . . 13  |-  ( 1  e.  RR  ->  (
* `  1 )  =  1 )
6058, 59ax-mp 8 . . . . . . . . . . . 12  |-  ( * `
 1 )  =  1
6157, 60syl6eq 2344 . . . . . . . . . . 11  |-  ( ph  ->  ( * `  ( X `  ( 1r `  (ℤ/n `  N ) ) ) )  =  1 )
6255, 61eqtrd 2328 . . . . . . . . . 10  |-  ( ph  ->  ( ( *  o.  X ) `  ( 1r `  (ℤ/n `  N ) ) )  =  1 )
6316simp3d 969 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  (
Base `  (ℤ/n `  N ) ) ( ( X `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) )
648, 44sylan 457 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( ( *  o.  X ) `  x )  =  ( * `  ( X `
 x ) ) )
65 cj0 11659 . . . . . . . . . . . . . . . . . 18  |-  ( * `
 0 )  =  0
6665eqcomi 2300 . . . . . . . . . . . . . . . . 17  |-  0  =  ( * ` 
0 )
6766a1i 10 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  0  =  ( * `  0 ) )
6864, 67eqeq12d 2310 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( ( ( *  o.  X ) `
 x )  =  0  <->  ( * `  ( X `  x ) )  =  ( * `
 0 ) ) )
698, 26sylan 457 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( X `  x )  e.  CC )
70 0cn 8847 . . . . . . . . . . . . . . . 16  |-  0  e.  CC
71 cj11 11663 . . . . . . . . . . . . . . . 16  |-  ( ( ( X `  x
)  e.  CC  /\  0  e.  CC )  ->  ( ( * `  ( X `  x ) )  =  ( * `
 0 )  <->  ( X `  x )  =  0 ) )
7269, 70, 71sylancl 643 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( ( * `
 ( X `  x ) )  =  ( * `  0
)  <->  ( X `  x )  =  0 ) )
7368, 72bitrd 244 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( ( ( *  o.  X ) `
 x )  =  0  <->  ( X `  x )  =  0 ) )
7473necon3bid 2494 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( ( ( *  o.  X ) `
 x )  =/=  0  <->  ( X `  x )  =/=  0
) )
7574imbi1d 308 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( ( ( ( *  o.  X
) `  x )  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N ) ) )  <-> 
( ( X `  x )  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N ) ) ) ) )
7675ralbidva 2572 . . . . . . . . . . 11  |-  ( ph  ->  ( A. x  e.  ( Base `  (ℤ/n `  N
) ) ( ( ( *  o.  X
) `  x )  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N ) ) )  <->  A. x  e.  ( Base `  (ℤ/n `  N ) ) ( ( X `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) ) )
7763, 76mpbird 223 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  (
Base `  (ℤ/n `  N ) ) ( ( ( *  o.  X ) `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) )
7850, 62, 773jca 1132 . . . . . . . . 9  |-  ( ph  ->  ( A. x  e.  (Unit `  (ℤ/n `  N ) ) A. y  e.  (Unit `  (ℤ/n `  N
) ) ( ( *  o.  X ) `
 ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( ( *  o.  X
) `  x )  x.  ( ( *  o.  X ) `  y
) )  /\  (
( *  o.  X
) `  ( 1r `  (ℤ/n `  N ) ) )  =  1  /\  A. x  e.  ( Base `  (ℤ/n `  N ) ) ( ( ( *  o.  X ) `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) ) )
791, 2, 7, 11, 13, 3dchrelbas3 20493 . . . . . . . . 9  |-  ( ph  ->  ( ( *  o.  X )  e.  D  <->  ( ( *  o.  X
) : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  ( A. x  e.  (Unit `  (ℤ/n `  N ) ) A. y  e.  (Unit `  (ℤ/n `  N
) ) ( ( *  o.  X ) `
 ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( ( *  o.  X
) `  x )  x.  ( ( *  o.  X ) `  y
) )  /\  (
( *  o.  X
) `  ( 1r `  (ℤ/n `  N ) ) )  =  1  /\  A. x  e.  ( Base `  (ℤ/n `  N ) ) ( ( ( *  o.  X ) `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) ) ) ) )
8010, 78, 79mpbir2and 888 . . . . . . . 8  |-  ( ph  ->  ( *  o.  X
)  e.  D )
811, 2, 3, 4, 5, 80dchrmul 20503 . . . . . . 7  |-  ( ph  ->  ( X ( +g  `  G ) ( *  o.  X ) )  =  ( X  o F  x.  ( *  o.  X ) ) )
8281adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( X ( +g  `  G ) ( *  o.  X
) )  =  ( X  o F  x.  ( *  o.  X
) ) )
8382fveq1d 5543 . . . . 5  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( X ( +g  `  G
) ( *  o.  X ) ) `  x )  =  ( ( X  o F  x.  ( *  o.  X ) ) `  x ) )
8423sseli 3189 . . . . . . . . 9  |-  ( x  e.  (Unit `  (ℤ/n `  N
) )  ->  x  e.  ( Base `  (ℤ/n `  N
) ) )
8584, 64sylan2 460 . . . . . . . 8  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( *  o.  X ) `  x )  =  ( * `  ( X `
 x ) ) )
8685oveq2d 5890 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( X `
 x )  x.  ( ( *  o.  X ) `  x
) )  =  ( ( X `  x
)  x.  ( * `
 ( X `  x ) ) ) )
8784, 69sylan2 460 . . . . . . . 8  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( X `  x )  e.  CC )
8887absvalsqd 11940 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( abs `  ( X `  x
) ) ^ 2 )  =  ( ( X `  x )  x.  ( * `  ( X `  x ) ) ) )
895adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  X  e.  D
)
90 simpr 447 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  x  e.  (Unit `  (ℤ/n `  N ) ) )
911, 3, 89, 2, 11, 90dchrabs 20515 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( abs `  ( X `  x )
)  =  1 )
9291oveq1d 5889 . . . . . . . 8  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( abs `  ( X `  x
) ) ^ 2 )  =  ( 1 ^ 2 ) )
93 sq1 11214 . . . . . . . 8  |-  ( 1 ^ 2 )  =  1
9492, 93syl6eq 2344 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( abs `  ( X `  x
) ) ^ 2 )  =  1 )
9586, 88, 943eqtr2d 2334 . . . . . 6  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( X `
 x )  x.  ( ( *  o.  X ) `  x
) )  =  1 )
968adantr 451 . . . . . . . 8  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  X : (
Base `  (ℤ/n `  N ) ) --> CC )
97 ffn 5405 . . . . . . . 8  |-  ( X : ( Base `  (ℤ/n `  N
) ) --> CC  ->  X  Fn  ( Base `  (ℤ/n `  N
) ) )
9896, 97syl 15 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  X  Fn  ( Base `  (ℤ/n `  N ) ) )
99 ffn 5405 . . . . . . . . 9  |-  ( ( *  o.  X ) : ( Base `  (ℤ/n `  N
) ) --> CC  ->  ( *  o.  X )  Fn  ( Base `  (ℤ/n `  N
) ) )
10010, 99syl 15 . . . . . . . 8  |-  ( ph  ->  ( *  o.  X
)  Fn  ( Base `  (ℤ/n `  N ) ) )
101100adantr 451 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( *  o.  X )  Fn  ( Base `  (ℤ/n `  N ) ) )
102 fvex 5555 . . . . . . . 8  |-  ( Base `  (ℤ/n `  N ) )  e. 
_V
103102a1i 10 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( Base `  (ℤ/n `  N
) )  e.  _V )
10484adantl 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  x  e.  (
Base `  (ℤ/n `  N ) ) )
105 fnfvof 6106 . . . . . . 7  |-  ( ( ( X  Fn  ( Base `  (ℤ/n `  N ) )  /\  ( *  o.  X
)  Fn  ( Base `  (ℤ/n `  N ) ) )  /\  ( ( Base `  (ℤ/n `  N ) )  e. 
_V  /\  x  e.  ( Base `  (ℤ/n `  N ) ) ) )  ->  ( ( X  o F  x.  (
*  o.  X ) ) `  x )  =  ( ( X `
 x )  x.  ( ( *  o.  X ) `  x
) ) )
10698, 101, 103, 104, 105syl22anc 1183 . . . . . 6  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( X  o F  x.  (
*  o.  X ) ) `  x )  =  ( ( X `
 x )  x.  ( ( *  o.  X ) `  x
) ) )
107 eqid 2296 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
10813adantr 451 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  N  e.  NN )
1091, 2, 107, 11, 108, 90dchr1 20512 . . . . . 6  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( 0g
`  G ) `  x )  =  1 )
11095, 106, 1093eqtr4d 2338 . . . . 5  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( X  o F  x.  (
*  o.  X ) ) `  x )  =  ( ( 0g
`  G ) `  x ) )
11183, 110eqtrd 2328 . . . 4  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( X ( +g  `  G
) ( *  o.  X ) ) `  x )  =  ( ( 0g `  G
) `  x )
)
112111ralrimiva 2639 . . 3  |-  ( ph  ->  A. x  e.  (Unit `  (ℤ/n `  N ) ) ( ( X ( +g  `  G ) ( *  o.  X ) ) `
 x )  =  ( ( 0g `  G ) `  x
) )
1131, 2, 3, 4, 5, 80dchrmulcl 20504 . . . 4  |-  ( ph  ->  ( X ( +g  `  G ) ( *  o.  X ) )  e.  D )
1141dchrabl 20509 . . . . . 6  |-  ( N  e.  NN  ->  G  e.  Abel )
115 ablgrp 15110 . . . . . 6  |-  ( G  e.  Abel  ->  G  e. 
Grp )
11613, 114, 1153syl 18 . . . . 5  |-  ( ph  ->  G  e.  Grp )
1173, 107grpidcl 14526 . . . . 5  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  D )
118116, 117syl 15 . . . 4  |-  ( ph  ->  ( 0g `  G
)  e.  D )
1191, 2, 3, 11, 113, 118dchreq 20513 . . 3  |-  ( ph  ->  ( ( X ( +g  `  G ) ( *  o.  X
) )  =  ( 0g `  G )  <->  A. x  e.  (Unit `  (ℤ/n `  N ) ) ( ( X ( +g  `  G ) ( *  o.  X ) ) `
 x )  =  ( ( 0g `  G ) `  x
) ) )
120112, 119mpbird 223 . 2  |-  ( ph  ->  ( X ( +g  `  G ) ( *  o.  X ) )  =  ( 0g `  G ) )
121 dchrinv.i . . . 4  |-  I  =  ( inv g `  G )
1223, 4, 107, 121grpinvid1 14546 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  D  /\  ( *  o.  X
)  e.  D )  ->  ( ( I `
 X )  =  ( *  o.  X
)  <->  ( X ( +g  `  G ) ( *  o.  X
) )  =  ( 0g `  G ) ) )
123116, 5, 80, 122syl3anc 1182 . 2  |-  ( ph  ->  ( ( I `  X )  =  ( *  o.  X )  <-> 
( X ( +g  `  G ) ( *  o.  X ) )  =  ( 0g `  G ) ) )
124120, 123mpbird 223 1  |-  ( ph  ->  ( I `  X
)  =  ( *  o.  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   _Vcvv 2801    o. ccom 4709    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874    o Fcof 6092   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    x. cmul 8758   NNcn 9762   2c2 9811   NN0cn0 9981   ^cexp 11120   *ccj 11597   abscabs 11735   Basecbs 13164   +g cplusg 13224   .rcmulr 13225   0gc0g 13416   Grpcgrp 14378   inv gcminusg 14379   Abelcabel 15106   Ringcrg 15353   CRingccrg 15354   1rcur 15355  Unitcui 15437  ℤ/nczn 16470  DChrcdchr 20487
This theorem is referenced by:  dchr2sum  20528  dchrisum0re  20678
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-tpos 6250  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-er 6676  df-ec 6678  df-qs 6682  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368  df-pi 12370  df-dvds 12548  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-divs 13428  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-mhm 14431  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-mulg 14508  df-subg 14634  df-nsg 14635  df-eqg 14636  df-ghm 14697  df-cntz 14809  df-od 14860  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-cring 15357  df-ur 15358  df-oppr 15421  df-dvdsr 15439  df-unit 15440  df-invr 15470  df-dvr 15481  df-rnghom 15512  df-drng 15530  df-subrg 15559  df-lmod 15645  df-lss 15706  df-lsp 15745  df-sra 15941  df-rgmod 15942  df-lidl 15943  df-rsp 15944  df-2idl 16000  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-zrh 16471  df-zn 16474  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-log 19930  df-cxp 19931  df-dchr 20488
  Copyright terms: Public domain W3C validator