MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0flblem2 Structured version   Unicode version

Theorem dchrisum0flblem2 21203
Description: Lemma for dchrisum0flb 21204. Induction over relatively prime factors, with the prime power case handled in dchrisum0flblem1 . (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
dchrisum0f.f  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
dchrisum0f.x  |-  ( ph  ->  X  e.  D )
dchrisum0flb.r  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
dchrisum0flb.1  |-  ( ph  ->  A  e.  ( ZZ>= ` 
2 ) )
dchrisum0flb.2  |-  ( ph  ->  P  e.  Prime )
dchrisum0flb.3  |-  ( ph  ->  P  ||  A )
dchrisum0flb.4  |-  ( ph  ->  A. y  e.  ( 1..^ A ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) )
Assertion
Ref Expression
dchrisum0flblem2  |-  ( ph  ->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( F `  A ) )
Distinct variable groups:    y,  .1.    y, F    q, b, v, y, A    N, q,
y    P, b, q, v, y    y, Z    y, D    L, b, v, y    X, b, v, y
Allowed substitution hints:    ph( y, v, q, b)    D( v, q, b)    .1. ( v,
q, b)    F( v,
q, b)    G( y,
v, q, b)    L( q)    N( v, b)    X( q)    Z( v, q, b)

Proof of Theorem dchrisum0flblem2
StepHypRef Expression
1 breq1 4215 . . 3  |-  ( 1  =  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  -> 
( 1  <_  (
( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )  <->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( ( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) ) )
2 breq1 4215 . . 3  |-  ( 0  =  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  -> 
( 0  <_  (
( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )  <->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( ( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) ) )
3 1t1e1 10126 . . . 4  |-  ( 1  x.  1 )  =  1
4 dchrisum0flb.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  e.  Prime )
54adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  P  e.  Prime )
6 nnq 10587 . . . . . . . . . . . . . . 15  |-  ( ( sqr `  A )  e.  NN  ->  ( sqr `  A )  e.  QQ )
76adantl 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  A
)  e.  QQ )
8 nnne0 10032 . . . . . . . . . . . . . . 15  |-  ( ( sqr `  A )  e.  NN  ->  ( sqr `  A )  =/=  0 )
98adantl 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  A
)  =/=  0 )
10 2z 10312 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
1110a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  2  e.  ZZ )
12 pcexp 13233 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  (
( sqr `  A
)  e.  QQ  /\  ( sqr `  A )  =/=  0 )  /\  2  e.  ZZ )  ->  ( P  pCnt  (
( sqr `  A
) ^ 2 ) )  =  ( 2  x.  ( P  pCnt  ( sqr `  A ) ) ) )
135, 7, 9, 11, 12syl121anc 1189 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P  pCnt  ( ( sqr `  A
) ^ 2 ) )  =  ( 2  x.  ( P  pCnt  ( sqr `  A ) ) ) )
14 dchrisum0flb.1 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  e.  ( ZZ>= ` 
2 ) )
15 eluz2b2 10548 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( A  e.  NN  /\  1  < 
A ) )
1615simplbi 447 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  NN )
1714, 16syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  NN )
1817nncnd 10016 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  CC )
1918adantr 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  A  e.  CC )
2019sqsqrd 12241 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( ( sqr `  A ) ^ 2 )  =  A )
2120oveq2d 6097 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P  pCnt  ( ( sqr `  A
) ^ 2 ) )  =  ( P 
pCnt  A ) )
22 2cn 10070 . . . . . . . . . . . . . . 15  |-  2  e.  CC
2322a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  2  e.  CC )
24 simpr 448 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  A
)  e.  NN )
255, 24pccld 13224 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P  pCnt  ( sqr `  A ) )  e.  NN0 )
2625nn0cnd 10276 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P  pCnt  ( sqr `  A ) )  e.  CC )
2723, 26mulcomd 9109 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( 2  x.  ( P  pCnt  ( sqr `  A ) ) )  =  ( ( P  pCnt  ( sqr `  A ) )  x.  2 ) )
2813, 21, 273eqtr3rd 2477 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( ( P 
pCnt  ( sqr `  A
) )  x.  2 )  =  ( P 
pCnt  A ) )
2928oveq2d 6097 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( ( P  pCnt  ( sqr `  A ) )  x.  2 ) )  =  ( P ^ ( P  pCnt  A ) ) )
30 prmnn 13082 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  NN )
315, 30syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  P  e.  NN )
3231nncnd 10016 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  P  e.  CC )
33 2nn0 10238 . . . . . . . . . . . . 13  |-  2  e.  NN0
3433a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  2  e.  NN0 )
3532, 34, 25expmuld 11526 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( ( P  pCnt  ( sqr `  A ) )  x.  2 ) )  =  ( ( P ^ ( P 
pCnt  ( sqr `  A
) ) ) ^
2 ) )
3629, 35eqtr3d 2470 . . . . . . . . . 10  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( P  pCnt  A
) )  =  ( ( P ^ ( P  pCnt  ( sqr `  A
) ) ) ^
2 ) )
3736fveq2d 5732 . . . . . . . . 9  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( P ^ ( P  pCnt  A ) ) )  =  ( sqr `  (
( P ^ ( P  pCnt  ( sqr `  A
) ) ) ^
2 ) ) )
3831, 25nnexpcld 11544 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( P  pCnt  ( sqr `  A ) ) )  e.  NN )
3938nnrpd 10647 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( P  pCnt  ( sqr `  A ) ) )  e.  RR+ )
4039rprege0d 10655 . . . . . . . . . 10  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( ( P ^ ( P  pCnt  ( sqr `  A ) ) )  e.  RR  /\  0  <_  ( P ^ ( P  pCnt  ( sqr `  A ) ) ) ) )
41 sqrsq 12075 . . . . . . . . . 10  |-  ( ( ( P ^ ( P  pCnt  ( sqr `  A
) ) )  e.  RR  /\  0  <_ 
( P ^ ( P  pCnt  ( sqr `  A
) ) ) )  ->  ( sqr `  (
( P ^ ( P  pCnt  ( sqr `  A
) ) ) ^
2 ) )  =  ( P ^ ( P  pCnt  ( sqr `  A
) ) ) )
4240, 41syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  (
( P ^ ( P  pCnt  ( sqr `  A
) ) ) ^
2 ) )  =  ( P ^ ( P  pCnt  ( sqr `  A
) ) ) )
4337, 42eqtrd 2468 . . . . . . . 8  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( P ^ ( P  pCnt  A ) ) )  =  ( P ^ ( P  pCnt  ( sqr `  A
) ) ) )
4443, 38eqeltrd 2510 . . . . . . 7  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN )
45 iftrue 3745 . . . . . . 7  |-  ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN  ->  if (
( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  =  1 )
4644, 45syl 16 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  =  1 )
47 rpvmasum.z . . . . . . . 8  |-  Z  =  (ℤ/n `  N )
48 rpvmasum.l . . . . . . . 8  |-  L  =  ( ZRHom `  Z
)
49 rpvmasum.a . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
50 rpvmasum2.g . . . . . . . 8  |-  G  =  (DChr `  N )
51 rpvmasum2.d . . . . . . . 8  |-  D  =  ( Base `  G
)
52 rpvmasum2.1 . . . . . . . 8  |-  .1.  =  ( 0g `  G )
53 dchrisum0f.f . . . . . . . 8  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
54 dchrisum0f.x . . . . . . . 8  |-  ( ph  ->  X  e.  D )
55 dchrisum0flb.r . . . . . . . 8  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
564, 17pccld 13224 . . . . . . . 8  |-  ( ph  ->  ( P  pCnt  A
)  e.  NN0 )
5747, 48, 49, 50, 51, 52, 53, 54, 55, 4, 56dchrisum0flblem1 21202 . . . . . . 7  |-  ( ph  ->  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( P ^ ( P 
pCnt  A ) ) ) )
5857adantr 452 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  <_  ( F `  ( P ^ ( P  pCnt  A ) ) ) )
5946, 58eqbrtrrd 4234 . . . . 5  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  1  <_  ( F `  ( P ^ ( P  pCnt  A ) ) ) )
60 pcdvds 13237 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  ||  A
)
614, 17, 60syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  ( P ^ ( P  pCnt  A ) ) 
||  A )
624, 30syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  NN )
6362, 56nnexpcld 11544 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
64 nndivdvds 12858 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  ( P ^ ( P 
pCnt  A ) )  e.  NN )  ->  (
( P ^ ( P  pCnt  A ) ) 
||  A  <->  ( A  /  ( P ^
( P  pCnt  A
) ) )  e.  NN ) )
6517, 63, 64syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( P ^
( P  pCnt  A
) )  ||  A  <->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  NN ) )
6661, 65mpbid 202 . . . . . . . . . . 11  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  NN )
6766nnzd 10374 . . . . . . . . . 10  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ZZ )
6867adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( A  / 
( P ^ ( P  pCnt  A ) ) )  e.  ZZ )
6917adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  A  e.  NN )
7069nnrpd 10647 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  A  e.  RR+ )
7170rprege0d 10655 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( A  e.  RR  /\  0  <_  A ) )
7263adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( P  pCnt  A
) )  e.  NN )
7372nnrpd 10647 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( P  pCnt  A
) )  e.  RR+ )
74 sqrdiv 12071 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( P ^ ( P  pCnt  A ) )  e.  RR+ )  ->  ( sqr `  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )  =  ( ( sqr `  A
)  /  ( sqr `  ( P ^ ( P  pCnt  A ) ) ) ) )
7571, 73, 74syl2anc 643 . . . . . . . . . 10  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  ( ( sqr `  A )  /  ( sqr `  ( P ^
( P  pCnt  A
) ) ) ) )
76 nnz 10303 . . . . . . . . . . . 12  |-  ( ( sqr `  A )  e.  NN  ->  ( sqr `  A )  e.  ZZ )
7776adantl 453 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  A
)  e.  ZZ )
78 znq 10578 . . . . . . . . . . 11  |-  ( ( ( sqr `  A
)  e.  ZZ  /\  ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN )  ->  (
( sqr `  A
)  /  ( sqr `  ( P ^ ( P  pCnt  A ) ) ) )  e.  QQ )
7977, 44, 78syl2anc 643 . . . . . . . . . 10  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( ( sqr `  A )  /  ( sqr `  ( P ^
( P  pCnt  A
) ) ) )  e.  QQ )
8075, 79eqeltrd 2510 . . . . . . . . 9  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  QQ )
81 zsqrelqelz 13150 . . . . . . . . 9  |-  ( ( ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ZZ  /\  ( sqr `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  QQ )  -> 
( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  ZZ )
8268, 80, 81syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  ZZ )
8366adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( A  / 
( P ^ ( P  pCnt  A ) ) )  e.  NN )
8483nnrpd 10647 . . . . . . . . 9  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( A  / 
( P ^ ( P  pCnt  A ) ) )  e.  RR+ )
8584sqrgt0d 12215 . . . . . . . 8  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  0  <  ( sqr `  ( A  / 
( P ^ ( P  pCnt  A ) ) ) ) )
86 elnnz 10292 . . . . . . . 8  |-  ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN  <->  ( ( sqr `  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )  e.  ZZ  /\  0  <  ( sqr `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) ) )
8782, 85, 86sylanbrc 646 . . . . . . 7  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN )
88 iftrue 3745 . . . . . . 7  |-  ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN  ->  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  =  1 )
8987, 88syl 16 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  =  1 )
90 nnuz 10521 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
9166, 90syl6eleq 2526 . . . . . . . . 9  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ( ZZ>= `  1 )
)
9217nnzd 10374 . . . . . . . . 9  |-  ( ph  ->  A  e.  ZZ )
9362nnred 10015 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  RR )
94 dchrisum0flb.3 . . . . . . . . . . . . 13  |-  ( ph  ->  P  ||  A )
95 pcelnn 13243 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  (
( P  pCnt  A
)  e.  NN  <->  P  ||  A
) )
964, 17, 95syl2anc 643 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( P  pCnt  A )  e.  NN  <->  P  ||  A
) )
9794, 96mpbird 224 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  pCnt  A
)  e.  NN )
98 prmuz2 13097 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
99 eluz2b2 10548 . . . . . . . . . . . . . 14  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
10099simprbi 451 . . . . . . . . . . . . 13  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
1014, 98, 1003syl 19 . . . . . . . . . . . 12  |-  ( ph  ->  1  <  P )
102 expgt1 11418 . . . . . . . . . . . 12  |-  ( ( P  e.  RR  /\  ( P  pCnt  A )  e.  NN  /\  1  <  P )  ->  1  <  ( P ^ ( P  pCnt  A ) ) )
10393, 97, 101, 102syl3anc 1184 . . . . . . . . . . 11  |-  ( ph  ->  1  <  ( P ^ ( P  pCnt  A ) ) )
104 1re 9090 . . . . . . . . . . . . 13  |-  1  e.  RR
105104a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  RR )
10663nnred 10015 . . . . . . . . . . . 12  |-  ( ph  ->  ( P ^ ( P  pCnt  A ) )  e.  RR )
10717nnred 10015 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR )
108 0lt1 9550 . . . . . . . . . . . . 13  |-  0  <  1
109108a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  1 )
11063nngt0d 10043 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  ( P ^ ( P  pCnt  A ) ) )
11117nngt0d 10043 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  A )
112 ltdiv2OLD 9896 . . . . . . . . . . . 12  |-  ( ( ( 1  e.  RR  /\  ( P ^ ( P  pCnt  A ) )  e.  RR  /\  A  e.  RR )  /\  (
0  <  1  /\  0  <  ( P ^
( P  pCnt  A
) )  /\  0  <  A ) )  -> 
( 1  <  ( P ^ ( P  pCnt  A ) )  <->  ( A  /  ( P ^
( P  pCnt  A
) ) )  < 
( A  /  1
) ) )
113105, 106, 107, 109, 110, 111, 112syl33anc 1199 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  <  ( P ^ ( P  pCnt  A ) )  <->  ( A  /  ( P ^
( P  pCnt  A
) ) )  < 
( A  /  1
) ) )
114103, 113mpbid 202 . . . . . . . . . 10  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  < 
( A  /  1
) )
11518div1d 9782 . . . . . . . . . 10  |-  ( ph  ->  ( A  /  1
)  =  A )
116114, 115breqtrd 4236 . . . . . . . . 9  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  < 
A )
117 elfzo2 11143 . . . . . . . . 9  |-  ( ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ( 1..^ A )  <-> 
( ( A  / 
( P ^ ( P  pCnt  A ) ) )  e.  ( ZZ>= ` 
1 )  /\  A  e.  ZZ  /\  ( A  /  ( P ^
( P  pCnt  A
) ) )  < 
A ) )
11891, 92, 116, 117syl3anbrc 1138 . . . . . . . 8  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ( 1..^ A ) )
119 dchrisum0flb.4 . . . . . . . 8  |-  ( ph  ->  A. y  e.  ( 1..^ A ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) )
120 fveq2 5728 . . . . . . . . . . . 12  |-  ( y  =  ( A  / 
( P ^ ( P  pCnt  A ) ) )  ->  ( sqr `  y )  =  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )
121120eleq1d 2502 . . . . . . . . . . 11  |-  ( y  =  ( A  / 
( P ^ ( P  pCnt  A ) ) )  ->  ( ( sqr `  y )  e.  NN  <->  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ) )
122121ifbid 3757 . . . . . . . . . 10  |-  ( y  =  ( A  / 
( P ^ ( P  pCnt  A ) ) )  ->  if (
( sqr `  y
)  e.  NN , 
1 ,  0 )  =  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 ) )
123 fveq2 5728 . . . . . . . . . 10  |-  ( y  =  ( A  / 
( P ^ ( P  pCnt  A ) ) )  ->  ( F `  y )  =  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )
124122, 123breq12d 4225 . . . . . . . . 9  |-  ( y  =  ( A  / 
( P ^ ( P  pCnt  A ) ) )  ->  ( if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  if (
( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  <_ 
( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
125124rspcv 3048 . . . . . . . 8  |-  ( ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ( 1..^ A )  ->  ( A. y  e.  ( 1..^ A ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y )  ->  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  <_ 
( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
126118, 119, 125sylc 58 . . . . . . 7  |-  ( ph  ->  if ( ( sqr `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  NN ,  1 ,  0 )  <_ 
( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )
127126adantr 452 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  <_ 
( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )
12889, 127eqbrtrrd 4234 . . . . 5  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  1  <_  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )
129 0le1 9551 . . . . . . . 8  |-  0  <_  1
130104, 129pm3.2i 442 . . . . . . 7  |-  ( 1  e.  RR  /\  0  <_  1 )
131130a1i 11 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( 1  e.  RR  /\  0  <_ 
1 ) )
13247, 48, 49, 50, 51, 52, 53, 54, 55dchrisum0ff 21201 . . . . . . . 8  |-  ( ph  ->  F : NN --> RR )
133132, 63ffvelrnd 5871 . . . . . . 7  |-  ( ph  ->  ( F `  ( P ^ ( P  pCnt  A ) ) )  e.  RR )
134133adantr 452 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( F `  ( P ^ ( P 
pCnt  A ) ) )  e.  RR )
135132, 66ffvelrnd 5871 . . . . . . 7  |-  ( ph  ->  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  RR )
136135adantr 452 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  RR )
137 lemul12a 9868 . . . . . 6  |-  ( ( ( ( 1  e.  RR  /\  0  <_ 
1 )  /\  ( F `  ( P ^ ( P  pCnt  A ) ) )  e.  RR )  /\  (
( 1  e.  RR  /\  0  <_  1 )  /\  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  RR ) )  ->  ( ( 1  <_  ( F `  ( P ^ ( P 
pCnt  A ) ) )  /\  1  <_  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )  ->  ( 1  x.  1 )  <_ 
( ( F `  ( P ^ ( P 
pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) ) ) )
138131, 134, 131, 136, 137syl22anc 1185 . . . . 5  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( ( 1  <_  ( F `  ( P ^ ( P 
pCnt  A ) ) )  /\  1  <_  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )  ->  ( 1  x.  1 )  <_ 
( ( F `  ( P ^ ( P 
pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) ) ) )
13959, 128, 138mp2and 661 . . . 4  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( 1  x.  1 )  <_  (
( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
1403, 139syl5eqbrr 4246 . . 3  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  1  <_  (
( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
141 0re 9091 . . . . . . 7  |-  0  e.  RR
142141a1i 11 . . . . . 6  |-  ( ph  ->  0  e.  RR )
143104, 141keepel 3796 . . . . . . 7  |-  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  e.  RR
144143a1i 11 . . . . . 6  |-  ( ph  ->  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN , 
1 ,  0 )  e.  RR )
145 breq2 4216 . . . . . . . 8  |-  ( 1  =  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  ->  (
0  <_  1  <->  0  <_  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 ) ) )
146 breq2 4216 . . . . . . . 8  |-  ( 0  =  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  ->  (
0  <_  0  <->  0  <_  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 ) ) )
147 0le0 10081 . . . . . . . 8  |-  0  <_  0
148145, 146, 129, 147keephyp 3793 . . . . . . 7  |-  0  <_  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN , 
1 ,  0 )
149148a1i 11 . . . . . 6  |-  ( ph  ->  0  <_  if (
( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 ) )
150142, 144, 133, 149, 57letrd 9227 . . . . 5  |-  ( ph  ->  0  <_  ( F `  ( P ^ ( P  pCnt  A ) ) ) )
151104, 141keepel 3796 . . . . . . 7  |-  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  e.  RR
152151a1i 11 . . . . . 6  |-  ( ph  ->  if ( ( sqr `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  NN ,  1 ,  0 )  e.  RR )
153 breq2 4216 . . . . . . . 8  |-  ( 1  =  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  -> 
( 0  <_  1  <->  0  <_  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 ) ) )
154 breq2 4216 . . . . . . . 8  |-  ( 0  =  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  -> 
( 0  <_  0  <->  0  <_  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 ) ) )
155153, 154, 129, 147keephyp 3793 . . . . . . 7  |-  0  <_  if ( ( sqr `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  NN ,  1 ,  0 )
156155a1i 11 . . . . . 6  |-  ( ph  ->  0  <_  if (
( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 ) )
157142, 152, 135, 156, 126letrd 9227 . . . . 5  |-  ( ph  ->  0  <_  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) )
158133, 135, 150, 157mulge0d 9603 . . . 4  |-  ( ph  ->  0  <_  ( ( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
159158adantr 452 . . 3  |-  ( (
ph  /\  -.  ( sqr `  A )  e.  NN )  ->  0  <_  ( ( F `  ( P ^ ( P 
pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) ) )
1601, 2, 140, 159ifbothda 3769 . 2  |-  ( ph  ->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( ( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
16163nncnd 10016 . . . . 5  |-  ( ph  ->  ( P ^ ( P  pCnt  A ) )  e.  CC )
16263nnne0d 10044 . . . . 5  |-  ( ph  ->  ( P ^ ( P  pCnt  A ) )  =/=  0 )
16318, 161, 162divcan2d 9792 . . . 4  |-  ( ph  ->  ( ( P ^
( P  pCnt  A
) )  x.  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  A )
164163fveq2d 5732 . . 3  |-  ( ph  ->  ( F `  (
( P ^ ( P  pCnt  A ) )  x.  ( A  / 
( P ^ ( P  pCnt  A ) ) ) ) )  =  ( F `  A
) )
165 pcndvds2 13241 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  -.  P  ||  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )
1664, 17, 165syl2anc 643 . . . . . 6  |-  ( ph  ->  -.  P  ||  ( A  /  ( P ^
( P  pCnt  A
) ) ) )
167 coprm 13100 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  /  ( P ^
( P  pCnt  A
) ) )  e.  ZZ )  ->  ( -.  P  ||  ( A  /  ( P ^
( P  pCnt  A
) ) )  <->  ( P  gcd  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  =  1 ) )
1684, 67, 167syl2anc 643 . . . . . 6  |-  ( ph  ->  ( -.  P  ||  ( A  /  ( P ^ ( P  pCnt  A ) ) )  <->  ( P  gcd  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  =  1 ) )
169166, 168mpbid 202 . . . . 5  |-  ( ph  ->  ( P  gcd  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  1 )
170 prmz 13083 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  ZZ )
1714, 170syl 16 . . . . . 6  |-  ( ph  ->  P  e.  ZZ )
172 rpexp1i 13121 . . . . . 6  |-  ( ( P  e.  ZZ  /\  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ZZ  /\  ( P 
pCnt  A )  e.  NN0 )  ->  ( ( P  gcd  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )  =  1  ->  ( ( P ^ ( P  pCnt  A ) )  gcd  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  1 ) )
173171, 67, 56, 172syl3anc 1184 . . . . 5  |-  ( ph  ->  ( ( P  gcd  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  =  1  ->  (
( P ^ ( P  pCnt  A ) )  gcd  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )  =  1 ) )
174169, 173mpd 15 . . . 4  |-  ( ph  ->  ( ( P ^
( P  pCnt  A
) )  gcd  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  1 )
17547, 48, 49, 50, 51, 52, 53, 54, 63, 66, 174dchrisum0fmul 21200 . . 3  |-  ( ph  ->  ( F `  (
( P ^ ( P  pCnt  A ) )  x.  ( A  / 
( P ^ ( P  pCnt  A ) ) ) ) )  =  ( ( F `  ( P ^ ( P 
pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) ) )
176164, 175eqtr3d 2470 . 2  |-  ( ph  ->  ( F `  A
)  =  ( ( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
177160, 176breqtrrd 4238 1  |-  ( ph  ->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( F `  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   {crab 2709   ifcif 3739   class class class wbr 4212    e. cmpt 4266   -->wf 5450   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    x. cmul 8995    < clt 9120    <_ cle 9121    / cdiv 9677   NNcn 10000   2c2 10049   NN0cn0 10221   ZZcz 10282   ZZ>=cuz 10488   QQcq 10574   RR+crp 10612  ..^cfzo 11135   ^cexp 11382   sqrcsqr 12038   sum_csu 12479    || cdivides 12852    gcd cgcd 13006   Primecprime 13079    pCnt cpc 13210   Basecbs 13469   0gc0g 13723   ZRHomczrh 16778  ℤ/nczn 16781  DChrcdchr 21016
This theorem is referenced by:  dchrisum0flb  21204
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-disj 4183  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-tpos 6479  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-omul 6729  df-er 6905  df-ec 6907  df-qs 6911  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-acn 7829  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ioc 10921  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-shft 11882  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-sum 12480  df-ef 12670  df-sin 12672  df-cos 12673  df-pi 12675  df-dvds 12853  df-gcd 13007  df-prm 13080  df-numer 13127  df-denom 13128  df-pc 13211  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-divs 13735  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-mhm 14738  df-submnd 14739  df-grp 14812  df-minusg 14813  df-sbg 14814  df-mulg 14815  df-subg 14941  df-nsg 14942  df-eqg 14943  df-ghm 15004  df-cntz 15116  df-od 15167  df-cmn 15414  df-abl 15415  df-mgp 15649  df-rng 15663  df-cring 15664  df-ur 15665  df-oppr 15728  df-dvdsr 15746  df-unit 15747  df-invr 15777  df-dvr 15788  df-rnghom 15819  df-drng 15837  df-subrg 15866  df-lmod 15952  df-lss 16009  df-lsp 16048  df-sra 16244  df-rgmod 16245  df-lidl 16246  df-rsp 16247  df-2idl 16303  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-zrh 16782  df-zn 16785  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-limc 19753  df-dv 19754  df-log 20454  df-cxp 20455  df-dchr 21017
  Copyright terms: Public domain W3C validator