MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0flblem2 Unicode version

Theorem dchrisum0flblem2 20658
Description: Lemma for dchrisum0flb 20659. Induction over relatively prime factors, with the prime power case handled in dchrisum0flblem1 . (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
dchrisum0f.f  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
dchrisum0f.x  |-  ( ph  ->  X  e.  D )
dchrisum0flb.r  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
dchrisum0flb.1  |-  ( ph  ->  A  e.  ( ZZ>= ` 
2 ) )
dchrisum0flb.2  |-  ( ph  ->  P  e.  Prime )
dchrisum0flb.3  |-  ( ph  ->  P  ||  A )
dchrisum0flb.4  |-  ( ph  ->  A. y  e.  ( 1..^ A ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) )
Assertion
Ref Expression
dchrisum0flblem2  |-  ( ph  ->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( F `  A ) )
Distinct variable groups:    y,  .1.    y, F    q, b, v, y, A    N, q,
y    P, b, q, v, y    y, Z    y, D    L, b, v, y    X, b, v, y
Allowed substitution hints:    ph( y, v, q, b)    D( v, q, b)    .1. ( v,
q, b)    F( v,
q, b)    G( y,
v, q, b)    L( q)    N( v, b)    X( q)    Z( v, q, b)

Proof of Theorem dchrisum0flblem2
StepHypRef Expression
1 breq1 4026 . . 3  |-  ( 1  =  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  -> 
( 1  <_  (
( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )  <->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( ( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) ) )
2 breq1 4026 . . 3  |-  ( 0  =  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  -> 
( 0  <_  (
( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )  <->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( ( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) ) )
3 1t1e1 9870 . . . 4  |-  ( 1  x.  1 )  =  1
4 dchrisum0flb.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  e.  Prime )
54adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  P  e.  Prime )
6 nnq 10329 . . . . . . . . . . . . . . 15  |-  ( ( sqr `  A )  e.  NN  ->  ( sqr `  A )  e.  QQ )
76adantl 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  A
)  e.  QQ )
8 nnne0 9778 . . . . . . . . . . . . . . 15  |-  ( ( sqr `  A )  e.  NN  ->  ( sqr `  A )  =/=  0 )
98adantl 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  A
)  =/=  0 )
10 2z 10054 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
1110a1i 10 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  2  e.  ZZ )
12 pcexp 12912 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  (
( sqr `  A
)  e.  QQ  /\  ( sqr `  A )  =/=  0 )  /\  2  e.  ZZ )  ->  ( P  pCnt  (
( sqr `  A
) ^ 2 ) )  =  ( 2  x.  ( P  pCnt  ( sqr `  A ) ) ) )
135, 7, 9, 11, 12syl121anc 1187 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P  pCnt  ( ( sqr `  A
) ^ 2 ) )  =  ( 2  x.  ( P  pCnt  ( sqr `  A ) ) ) )
14 dchrisum0flb.1 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  e.  ( ZZ>= ` 
2 ) )
15 eluz2b2 10290 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( A  e.  NN  /\  1  < 
A ) )
1615simplbi 446 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  NN )
1714, 16syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  NN )
1817nncnd 9762 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  CC )
1918adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  A  e.  CC )
2019sqsqrd 11921 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( ( sqr `  A ) ^ 2 )  =  A )
2120oveq2d 5874 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P  pCnt  ( ( sqr `  A
) ^ 2 ) )  =  ( P 
pCnt  A ) )
22 2cn 9816 . . . . . . . . . . . . . . 15  |-  2  e.  CC
2322a1i 10 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  2  e.  CC )
24 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  A
)  e.  NN )
255, 24pccld 12903 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P  pCnt  ( sqr `  A ) )  e.  NN0 )
2625nn0cnd 10020 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P  pCnt  ( sqr `  A ) )  e.  CC )
2723, 26mulcomd 8856 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( 2  x.  ( P  pCnt  ( sqr `  A ) ) )  =  ( ( P  pCnt  ( sqr `  A ) )  x.  2 ) )
2813, 21, 273eqtr3rd 2324 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( ( P 
pCnt  ( sqr `  A
) )  x.  2 )  =  ( P 
pCnt  A ) )
2928oveq2d 5874 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( ( P  pCnt  ( sqr `  A ) )  x.  2 ) )  =  ( P ^ ( P  pCnt  A ) ) )
30 prmnn 12761 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  NN )
315, 30syl 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  P  e.  NN )
3231nncnd 9762 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  P  e.  CC )
33 2nn0 9982 . . . . . . . . . . . . 13  |-  2  e.  NN0
3433a1i 10 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  2  e.  NN0 )
3532, 34, 25expmuld 11248 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( ( P  pCnt  ( sqr `  A ) )  x.  2 ) )  =  ( ( P ^ ( P 
pCnt  ( sqr `  A
) ) ) ^
2 ) )
3629, 35eqtr3d 2317 . . . . . . . . . 10  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( P  pCnt  A
) )  =  ( ( P ^ ( P  pCnt  ( sqr `  A
) ) ) ^
2 ) )
3736fveq2d 5529 . . . . . . . . 9  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( P ^ ( P  pCnt  A ) ) )  =  ( sqr `  (
( P ^ ( P  pCnt  ( sqr `  A
) ) ) ^
2 ) ) )
3831, 25nnexpcld 11266 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( P  pCnt  ( sqr `  A ) ) )  e.  NN )
3938nnrpd 10389 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( P  pCnt  ( sqr `  A ) ) )  e.  RR+ )
4039rprege0d 10397 . . . . . . . . . 10  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( ( P ^ ( P  pCnt  ( sqr `  A ) ) )  e.  RR  /\  0  <_  ( P ^ ( P  pCnt  ( sqr `  A ) ) ) ) )
41 sqrsq 11755 . . . . . . . . . 10  |-  ( ( ( P ^ ( P  pCnt  ( sqr `  A
) ) )  e.  RR  /\  0  <_ 
( P ^ ( P  pCnt  ( sqr `  A
) ) ) )  ->  ( sqr `  (
( P ^ ( P  pCnt  ( sqr `  A
) ) ) ^
2 ) )  =  ( P ^ ( P  pCnt  ( sqr `  A
) ) ) )
4240, 41syl 15 . . . . . . . . 9  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  (
( P ^ ( P  pCnt  ( sqr `  A
) ) ) ^
2 ) )  =  ( P ^ ( P  pCnt  ( sqr `  A
) ) ) )
4337, 42eqtrd 2315 . . . . . . . 8  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( P ^ ( P  pCnt  A ) ) )  =  ( P ^ ( P  pCnt  ( sqr `  A
) ) ) )
4443, 38eqeltrd 2357 . . . . . . 7  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN )
45 iftrue 3571 . . . . . . 7  |-  ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN  ->  if (
( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  =  1 )
4644, 45syl 15 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  =  1 )
47 rpvmasum.z . . . . . . . 8  |-  Z  =  (ℤ/n `  N )
48 rpvmasum.l . . . . . . . 8  |-  L  =  ( ZRHom `  Z
)
49 rpvmasum.a . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
50 rpvmasum2.g . . . . . . . 8  |-  G  =  (DChr `  N )
51 rpvmasum2.d . . . . . . . 8  |-  D  =  ( Base `  G
)
52 rpvmasum2.1 . . . . . . . 8  |-  .1.  =  ( 0g `  G )
53 dchrisum0f.f . . . . . . . 8  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
54 dchrisum0f.x . . . . . . . 8  |-  ( ph  ->  X  e.  D )
55 dchrisum0flb.r . . . . . . . 8  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
564, 17pccld 12903 . . . . . . . 8  |-  ( ph  ->  ( P  pCnt  A
)  e.  NN0 )
5747, 48, 49, 50, 51, 52, 53, 54, 55, 4, 56dchrisum0flblem1 20657 . . . . . . 7  |-  ( ph  ->  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( P ^ ( P 
pCnt  A ) ) ) )
5857adantr 451 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  <_  ( F `  ( P ^ ( P  pCnt  A ) ) ) )
5946, 58eqbrtrrd 4045 . . . . 5  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  1  <_  ( F `  ( P ^ ( P  pCnt  A ) ) ) )
60 pcdvds 12916 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  ||  A
)
614, 17, 60syl2anc 642 . . . . . . . . . . . 12  |-  ( ph  ->  ( P ^ ( P  pCnt  A ) ) 
||  A )
624, 30syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  NN )
6362, 56nnexpcld 11266 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
64 nndivdvds 12537 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  ( P ^ ( P 
pCnt  A ) )  e.  NN )  ->  (
( P ^ ( P  pCnt  A ) ) 
||  A  <->  ( A  /  ( P ^
( P  pCnt  A
) ) )  e.  NN ) )
6517, 63, 64syl2anc 642 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( P ^
( P  pCnt  A
) )  ||  A  <->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  NN ) )
6661, 65mpbid 201 . . . . . . . . . . 11  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  NN )
6766nnzd 10116 . . . . . . . . . 10  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ZZ )
6867adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( A  / 
( P ^ ( P  pCnt  A ) ) )  e.  ZZ )
6917adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  A  e.  NN )
7069nnrpd 10389 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  A  e.  RR+ )
7170rprege0d 10397 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( A  e.  RR  /\  0  <_  A ) )
7263adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( P  pCnt  A
) )  e.  NN )
7372nnrpd 10389 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( P  pCnt  A
) )  e.  RR+ )
74 sqrdiv 11751 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( P ^ ( P  pCnt  A ) )  e.  RR+ )  ->  ( sqr `  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )  =  ( ( sqr `  A
)  /  ( sqr `  ( P ^ ( P  pCnt  A ) ) ) ) )
7571, 73, 74syl2anc 642 . . . . . . . . . 10  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  ( ( sqr `  A )  /  ( sqr `  ( P ^
( P  pCnt  A
) ) ) ) )
76 nnz 10045 . . . . . . . . . . . 12  |-  ( ( sqr `  A )  e.  NN  ->  ( sqr `  A )  e.  ZZ )
7776adantl 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  A
)  e.  ZZ )
78 znq 10320 . . . . . . . . . . 11  |-  ( ( ( sqr `  A
)  e.  ZZ  /\  ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN )  ->  (
( sqr `  A
)  /  ( sqr `  ( P ^ ( P  pCnt  A ) ) ) )  e.  QQ )
7977, 44, 78syl2anc 642 . . . . . . . . . 10  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( ( sqr `  A )  /  ( sqr `  ( P ^
( P  pCnt  A
) ) ) )  e.  QQ )
8075, 79eqeltrd 2357 . . . . . . . . 9  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  QQ )
81 zsqrelqelz 12829 . . . . . . . . 9  |-  ( ( ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ZZ  /\  ( sqr `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  QQ )  -> 
( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  ZZ )
8268, 80, 81syl2anc 642 . . . . . . . 8  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  ZZ )
8366adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( A  / 
( P ^ ( P  pCnt  A ) ) )  e.  NN )
8483nnrpd 10389 . . . . . . . . 9  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( A  / 
( P ^ ( P  pCnt  A ) ) )  e.  RR+ )
8584sqrgt0d 11895 . . . . . . . 8  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  0  <  ( sqr `  ( A  / 
( P ^ ( P  pCnt  A ) ) ) ) )
86 elnnz 10034 . . . . . . . 8  |-  ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN  <->  ( ( sqr `  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )  e.  ZZ  /\  0  <  ( sqr `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) ) )
8782, 85, 86sylanbrc 645 . . . . . . 7  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN )
88 iftrue 3571 . . . . . . 7  |-  ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN  ->  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  =  1 )
8987, 88syl 15 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  =  1 )
90 nnuz 10263 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
9166, 90syl6eleq 2373 . . . . . . . . 9  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ( ZZ>= `  1 )
)
9217nnzd 10116 . . . . . . . . 9  |-  ( ph  ->  A  e.  ZZ )
9362nnred 9761 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  RR )
94 dchrisum0flb.3 . . . . . . . . . . . . 13  |-  ( ph  ->  P  ||  A )
95 pcelnn 12922 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  (
( P  pCnt  A
)  e.  NN  <->  P  ||  A
) )
964, 17, 95syl2anc 642 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( P  pCnt  A )  e.  NN  <->  P  ||  A
) )
9794, 96mpbird 223 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  pCnt  A
)  e.  NN )
98 prmuz2 12776 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
99 eluz2b2 10290 . . . . . . . . . . . . . 14  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
10099simprbi 450 . . . . . . . . . . . . 13  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
1014, 98, 1003syl 18 . . . . . . . . . . . 12  |-  ( ph  ->  1  <  P )
102 expgt1 11140 . . . . . . . . . . . 12  |-  ( ( P  e.  RR  /\  ( P  pCnt  A )  e.  NN  /\  1  <  P )  ->  1  <  ( P ^ ( P  pCnt  A ) ) )
10393, 97, 101, 102syl3anc 1182 . . . . . . . . . . 11  |-  ( ph  ->  1  <  ( P ^ ( P  pCnt  A ) ) )
104 1re 8837 . . . . . . . . . . . . 13  |-  1  e.  RR
105104a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  RR )
10663nnred 9761 . . . . . . . . . . . 12  |-  ( ph  ->  ( P ^ ( P  pCnt  A ) )  e.  RR )
10717nnred 9761 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR )
108 0lt1 9296 . . . . . . . . . . . . 13  |-  0  <  1
109108a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  1 )
11063nngt0d 9789 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  ( P ^ ( P  pCnt  A ) ) )
11117nngt0d 9789 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  A )
112 ltdiv2OLD 9642 . . . . . . . . . . . 12  |-  ( ( ( 1  e.  RR  /\  ( P ^ ( P  pCnt  A ) )  e.  RR  /\  A  e.  RR )  /\  (
0  <  1  /\  0  <  ( P ^
( P  pCnt  A
) )  /\  0  <  A ) )  -> 
( 1  <  ( P ^ ( P  pCnt  A ) )  <->  ( A  /  ( P ^
( P  pCnt  A
) ) )  < 
( A  /  1
) ) )
113105, 106, 107, 109, 110, 111, 112syl33anc 1197 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  <  ( P ^ ( P  pCnt  A ) )  <->  ( A  /  ( P ^
( P  pCnt  A
) ) )  < 
( A  /  1
) ) )
114103, 113mpbid 201 . . . . . . . . . 10  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  < 
( A  /  1
) )
11518div1d 9528 . . . . . . . . . 10  |-  ( ph  ->  ( A  /  1
)  =  A )
116114, 115breqtrd 4047 . . . . . . . . 9  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  < 
A )
117 elfzo2 10878 . . . . . . . . 9  |-  ( ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ( 1..^ A )  <-> 
( ( A  / 
( P ^ ( P  pCnt  A ) ) )  e.  ( ZZ>= ` 
1 )  /\  A  e.  ZZ  /\  ( A  /  ( P ^
( P  pCnt  A
) ) )  < 
A ) )
11891, 92, 116, 117syl3anbrc 1136 . . . . . . . 8  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ( 1..^ A ) )
119 dchrisum0flb.4 . . . . . . . 8  |-  ( ph  ->  A. y  e.  ( 1..^ A ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) )
120 fveq2 5525 . . . . . . . . . . . 12  |-  ( y  =  ( A  / 
( P ^ ( P  pCnt  A ) ) )  ->  ( sqr `  y )  =  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )
121120eleq1d 2349 . . . . . . . . . . 11  |-  ( y  =  ( A  / 
( P ^ ( P  pCnt  A ) ) )  ->  ( ( sqr `  y )  e.  NN  <->  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ) )
122121ifbid 3583 . . . . . . . . . 10  |-  ( y  =  ( A  / 
( P ^ ( P  pCnt  A ) ) )  ->  if (
( sqr `  y
)  e.  NN , 
1 ,  0 )  =  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 ) )
123 fveq2 5525 . . . . . . . . . 10  |-  ( y  =  ( A  / 
( P ^ ( P  pCnt  A ) ) )  ->  ( F `  y )  =  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )
124122, 123breq12d 4036 . . . . . . . . 9  |-  ( y  =  ( A  / 
( P ^ ( P  pCnt  A ) ) )  ->  ( if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  if (
( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  <_ 
( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
125124rspcv 2880 . . . . . . . 8  |-  ( ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ( 1..^ A )  ->  ( A. y  e.  ( 1..^ A ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y )  ->  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  <_ 
( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
126118, 119, 125sylc 56 . . . . . . 7  |-  ( ph  ->  if ( ( sqr `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  NN ,  1 ,  0 )  <_ 
( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )
127126adantr 451 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  <_ 
( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )
12889, 127eqbrtrrd 4045 . . . . 5  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  1  <_  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )
129 0le1 9297 . . . . . . . 8  |-  0  <_  1
130104, 129pm3.2i 441 . . . . . . 7  |-  ( 1  e.  RR  /\  0  <_  1 )
131130a1i 10 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( 1  e.  RR  /\  0  <_ 
1 ) )
13247, 48, 49, 50, 51, 52, 53, 54, 55dchrisum0ff 20656 . . . . . . . 8  |-  ( ph  ->  F : NN --> RR )
133 ffvelrn 5663 . . . . . . . 8  |-  ( ( F : NN --> RR  /\  ( P ^ ( P 
pCnt  A ) )  e.  NN )  ->  ( F `  ( P ^ ( P  pCnt  A ) ) )  e.  RR )
134132, 63, 133syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( F `  ( P ^ ( P  pCnt  A ) ) )  e.  RR )
135134adantr 451 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( F `  ( P ^ ( P 
pCnt  A ) ) )  e.  RR )
136 ffvelrn 5663 . . . . . . . 8  |-  ( ( F : NN --> RR  /\  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  NN )  ->  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  RR )
137132, 66, 136syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  RR )
138137adantr 451 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  RR )
139 lemul12a 9614 . . . . . 6  |-  ( ( ( ( 1  e.  RR  /\  0  <_ 
1 )  /\  ( F `  ( P ^ ( P  pCnt  A ) ) )  e.  RR )  /\  (
( 1  e.  RR  /\  0  <_  1 )  /\  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  RR ) )  ->  ( ( 1  <_  ( F `  ( P ^ ( P 
pCnt  A ) ) )  /\  1  <_  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )  ->  ( 1  x.  1 )  <_ 
( ( F `  ( P ^ ( P 
pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) ) ) )
140131, 135, 131, 138, 139syl22anc 1183 . . . . 5  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( ( 1  <_  ( F `  ( P ^ ( P 
pCnt  A ) ) )  /\  1  <_  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )  ->  ( 1  x.  1 )  <_ 
( ( F `  ( P ^ ( P 
pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) ) ) )
14159, 128, 140mp2and 660 . . . 4  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( 1  x.  1 )  <_  (
( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
1423, 141syl5eqbrr 4057 . . 3  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  1  <_  (
( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
143 0re 8838 . . . . . . 7  |-  0  e.  RR
144143a1i 10 . . . . . 6  |-  ( ph  ->  0  e.  RR )
145104, 143keepel 3622 . . . . . . 7  |-  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  e.  RR
146145a1i 10 . . . . . 6  |-  ( ph  ->  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN , 
1 ,  0 )  e.  RR )
147 breq2 4027 . . . . . . . 8  |-  ( 1  =  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  ->  (
0  <_  1  <->  0  <_  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 ) ) )
148 breq2 4027 . . . . . . . 8  |-  ( 0  =  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  ->  (
0  <_  0  <->  0  <_  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 ) ) )
149 0le0 9827 . . . . . . . 8  |-  0  <_  0
150147, 148, 129, 149keephyp 3619 . . . . . . 7  |-  0  <_  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN , 
1 ,  0 )
151150a1i 10 . . . . . 6  |-  ( ph  ->  0  <_  if (
( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 ) )
152144, 146, 134, 151, 57letrd 8973 . . . . 5  |-  ( ph  ->  0  <_  ( F `  ( P ^ ( P  pCnt  A ) ) ) )
153104, 143keepel 3622 . . . . . . 7  |-  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  e.  RR
154153a1i 10 . . . . . 6  |-  ( ph  ->  if ( ( sqr `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  NN ,  1 ,  0 )  e.  RR )
155 breq2 4027 . . . . . . . 8  |-  ( 1  =  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  -> 
( 0  <_  1  <->  0  <_  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 ) ) )
156 breq2 4027 . . . . . . . 8  |-  ( 0  =  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  -> 
( 0  <_  0  <->  0  <_  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 ) ) )
157155, 156, 129, 149keephyp 3619 . . . . . . 7  |-  0  <_  if ( ( sqr `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  NN ,  1 ,  0 )
158157a1i 10 . . . . . 6  |-  ( ph  ->  0  <_  if (
( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 ) )
159144, 154, 137, 158, 126letrd 8973 . . . . 5  |-  ( ph  ->  0  <_  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) )
160134, 137, 152, 159mulge0d 9349 . . . 4  |-  ( ph  ->  0  <_  ( ( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
161160adantr 451 . . 3  |-  ( (
ph  /\  -.  ( sqr `  A )  e.  NN )  ->  0  <_  ( ( F `  ( P ^ ( P 
pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) ) )
1621, 2, 142, 161ifbothda 3595 . 2  |-  ( ph  ->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( ( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
16363nncnd 9762 . . . . 5  |-  ( ph  ->  ( P ^ ( P  pCnt  A ) )  e.  CC )
16463nnne0d 9790 . . . . 5  |-  ( ph  ->  ( P ^ ( P  pCnt  A ) )  =/=  0 )
16518, 163, 164divcan2d 9538 . . . 4  |-  ( ph  ->  ( ( P ^
( P  pCnt  A
) )  x.  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  A )
166165fveq2d 5529 . . 3  |-  ( ph  ->  ( F `  (
( P ^ ( P  pCnt  A ) )  x.  ( A  / 
( P ^ ( P  pCnt  A ) ) ) ) )  =  ( F `  A
) )
167 pcndvds2 12920 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  -.  P  ||  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )
1684, 17, 167syl2anc 642 . . . . . 6  |-  ( ph  ->  -.  P  ||  ( A  /  ( P ^
( P  pCnt  A
) ) ) )
169 coprm 12779 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  /  ( P ^
( P  pCnt  A
) ) )  e.  ZZ )  ->  ( -.  P  ||  ( A  /  ( P ^
( P  pCnt  A
) ) )  <->  ( P  gcd  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  =  1 ) )
1704, 67, 169syl2anc 642 . . . . . 6  |-  ( ph  ->  ( -.  P  ||  ( A  /  ( P ^ ( P  pCnt  A ) ) )  <->  ( P  gcd  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  =  1 ) )
171168, 170mpbid 201 . . . . 5  |-  ( ph  ->  ( P  gcd  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  1 )
172 prmz 12762 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  ZZ )
1734, 172syl 15 . . . . . 6  |-  ( ph  ->  P  e.  ZZ )
174 rpexp1i 12800 . . . . . 6  |-  ( ( P  e.  ZZ  /\  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ZZ  /\  ( P 
pCnt  A )  e.  NN0 )  ->  ( ( P  gcd  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )  =  1  ->  ( ( P ^ ( P  pCnt  A ) )  gcd  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  1 ) )
175173, 67, 56, 174syl3anc 1182 . . . . 5  |-  ( ph  ->  ( ( P  gcd  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  =  1  ->  (
( P ^ ( P  pCnt  A ) )  gcd  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )  =  1 ) )
176171, 175mpd 14 . . . 4  |-  ( ph  ->  ( ( P ^
( P  pCnt  A
) )  gcd  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  1 )
17747, 48, 49, 50, 51, 52, 53, 54, 63, 66, 176dchrisum0fmul 20655 . . 3  |-  ( ph  ->  ( F `  (
( P ^ ( P  pCnt  A ) )  x.  ( A  / 
( P ^ ( P  pCnt  A ) ) ) ) )  =  ( ( F `  ( P ^ ( P 
pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) ) )
178166, 177eqtr3d 2317 . 2  |-  ( ph  ->  ( F `  A
)  =  ( ( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
179162, 178breqtrrd 4049 1  |-  ( ph  ->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( F `  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   {crab 2547   ifcif 3565   class class class wbr 4023    e. cmpt 4077   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    x. cmul 8742    < clt 8867    <_ cle 8868    / cdiv 9423   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   QQcq 10316   RR+crp 10354  ..^cfzo 10870   ^cexp 11104   sqrcsqr 11718   sum_csu 12158    || cdivides 12531    gcd cgcd 12685   Primecprime 12758    pCnt cpc 12889   Basecbs 13148   0gc0g 13400   ZRHomczrh 16451  ℤ/nczn 16454  DChrcdchr 20471
This theorem is referenced by:  dchrisum0flb  20659
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-ec 6662  df-qs 6666  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-pi 12354  df-dvds 12532  df-gcd 12686  df-prm 12759  df-numer 12806  df-denom 12807  df-pc 12890  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-divs 13412  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-nsg 14619  df-eqg 14620  df-ghm 14681  df-cntz 14793  df-od 14844  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-dvr 15465  df-rnghom 15496  df-drng 15514  df-subrg 15543  df-lmod 15629  df-lss 15690  df-lsp 15729  df-sra 15925  df-rgmod 15926  df-lidl 15927  df-rsp 15928  df-2idl 15984  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-zrh 16455  df-zn 16458  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217  df-log 19914  df-cxp 19915  df-dchr 20472
  Copyright terms: Public domain W3C validator