MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0fno1 Structured version   Unicode version

Theorem dchrisum0fno1 21207
Description: The sum  sum_ k  <_  x ,  F ( x )  /  sqr k is divergent (i.e. not eventually bounded). Equation 9.4.30 of [Shapiro], p. 383. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
dchrisum0f.f  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
dchrisum0f.x  |-  ( ph  ->  X  e.  D )
dchrisum0flb.r  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
dchrisum0fno1.a  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) )  e.  O ( 1 ) )
Assertion
Ref Expression
dchrisum0fno1  |-  -.  ph
Distinct variable groups:    x, k,  .1.    k, F, x    k,
b, q, v, x   
k, N, q, x    ph, k, x    k, Z, x    D, k, x    L, b, k, v, x    X, b, k, v, x
Allowed substitution hints:    ph( v, q, b)    D( v, q, b)    .1. ( v, q, b)    F( v, q, b)    G( x, v, k, q, b)    L( q)    N( v, b)    X( q)    Z( v, q, b)

Proof of Theorem dchrisum0fno1
Dummy variables  m  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 logno1 20529 . 2  |-  -.  (
x  e.  RR+  |->  ( log `  x ) )  e.  O ( 1 )
2 relogcl 20475 . . . . . . 7  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
32adantl 454 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( log `  x )  e.  RR )
43recnd 9116 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( log `  x )  e.  CC )
5 2cn 10072 . . . . . 6  |-  2  e.  CC
65a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  2  e.  CC )
7 2ne0 10085 . . . . . 6  |-  2  =/=  0
87a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  2  =/=  0 )
94, 6, 8divcan2d 9794 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  ( ( log `  x )  /  2
) )  =  ( log `  x ) )
109mpteq2dva 4297 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( 2  x.  (
( log `  x
)  /  2 ) ) )  =  ( x  e.  RR+  |->  ( log `  x ) ) )
113rehalfcld 10216 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( log `  x )  / 
2 )  e.  RR )
1211recnd 9116 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( log `  x )  / 
2 )  e.  CC )
13 rpssre 10624 . . . . . 6  |-  RR+  C_  RR
14 o1const 12415 . . . . . 6  |-  ( (
RR+  C_  RR  /\  2  e.  CC )  ->  (
x  e.  RR+  |->  2 )  e.  O ( 1 ) )
1513, 5, 14mp2an 655 . . . . 5  |-  ( x  e.  RR+  |->  2 )  e.  O ( 1 )
1615a1i 11 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  2 )  e.  O
( 1 ) )
17 1re 9092 . . . . . 6  |-  1  e.  RR
1817a1i 11 . . . . 5  |-  ( ph  ->  1  e.  RR )
19 dchrisum0fno1.a . . . . 5  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) )  e.  O ( 1 ) )
20 sumex 12483 . . . . . 6  |-  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k )  /  ( sqr `  k ) )  e.  _V
2120a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k )  /  ( sqr `  k ) )  e.  _V )
2211adantrr 699 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  /  2 )  e.  RR )
232ad2antrl 710 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  x
)  e.  RR )
24 log1 20482 . . . . . . . . 9  |-  ( log `  1 )  =  0
25 simprr 735 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  <_  x )
26 1rp 10618 . . . . . . . . . . 11  |-  1  e.  RR+
27 simprl 734 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR+ )
28 logleb 20500 . . . . . . . . . . 11  |-  ( ( 1  e.  RR+  /\  x  e.  RR+ )  ->  (
1  <_  x  <->  ( log `  1 )  <_  ( log `  x ) ) )
2926, 27, 28sylancr 646 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  <_  x  <->  ( log `  1 )  <_  ( log `  x
) ) )
3025, 29mpbid 203 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  1
)  <_  ( log `  x ) )
3124, 30syl5eqbrr 4248 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <_  ( log `  x ) )
32 2re 10071 . . . . . . . . 9  |-  2  e.  RR
3332a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
2  e.  RR )
34 2pos 10084 . . . . . . . . 9  |-  0  <  2
3534a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <  2 )
36 divge0 9881 . . . . . . . 8  |-  ( ( ( ( log `  x
)  e.  RR  /\  0  <_  ( log `  x
) )  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  0  <_  (
( log `  x
)  /  2 ) )
3723, 31, 33, 35, 36syl22anc 1186 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <_  ( ( log `  x )  / 
2 ) )
3822, 37absidd 12227 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
( log `  x
)  /  2 ) )  =  ( ( log `  x )  /  2 ) )
39 fzfid 11314 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  x ) )  e.  Fin )
40 rpvmasum.z . . . . . . . . . . . 12  |-  Z  =  (ℤ/n `  N )
41 rpvmasum.l . . . . . . . . . . . 12  |-  L  =  ( ZRHom `  Z
)
42 rpvmasum.a . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  NN )
43 rpvmasum2.g . . . . . . . . . . . 12  |-  G  =  (DChr `  N )
44 rpvmasum2.d . . . . . . . . . . . 12  |-  D  =  ( Base `  G
)
45 rpvmasum2.1 . . . . . . . . . . . 12  |-  .1.  =  ( 0g `  G )
46 dchrisum0f.f . . . . . . . . . . . 12  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
47 dchrisum0f.x . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  D )
48 dchrisum0flb.r . . . . . . . . . . . 12  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
4940, 41, 42, 43, 44, 45, 46, 47, 48dchrisum0ff 21203 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> RR )
5049adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  F : NN --> RR )
51 elfznn 11082 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( |_ `  x
) )  ->  k  e.  NN )
52 ffvelrn 5870 . . . . . . . . . 10  |-  ( ( F : NN --> RR  /\  k  e.  NN )  ->  ( F `  k
)  e.  RR )
5350, 51, 52syl2an 465 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( F `  k )  e.  RR )
5451adantl 454 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  NN )
5554nnrpd 10649 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  RR+ )
5655rpsqrcld 12216 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  k
)  e.  RR+ )
5753, 56rerpdivcld 10677 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( F `
 k )  / 
( sqr `  k
) )  e.  RR )
5839, 57fsumrecl 12530 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) )  e.  RR )
5958recnd 9116 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) )  e.  CC )
6059abscld 12240 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) )  e.  RR )
61 fzfid 11314 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  ( sqr `  x
) ) )  e. 
Fin )
62 elfznn 11082 . . . . . . . . . . 11  |-  ( i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  i  e.  NN )
6362adantl 454 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
i  e.  NN )
6463nnrecred 10047 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( 1  /  i
)  e.  RR )
6561, 64fsumrecl 12530 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) ( 1  /  i )  e.  RR )
66 logsqr 20597 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( log `  ( sqr `  x
) )  =  ( ( log `  x
)  /  2 ) )
6766ad2antrl 710 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  ( sqr `  x ) )  =  ( ( log `  x )  /  2
) )
68 rpsqrcl 12072 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( sqr `  x )  e.  RR+ )
6968ad2antrl 710 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( sqr `  x
)  e.  RR+ )
70 harmoniclbnd 20849 . . . . . . . . . 10  |-  ( ( sqr `  x )  e.  RR+  ->  ( log `  ( sqr `  x
) )  <_  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) ) ( 1  /  i ) )
7169, 70syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  ( sqr `  x ) )  <_  sum_ i  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) ) ( 1  /  i ) )
7267, 71eqbrtrrd 4236 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  /  2 )  <_  sum_ i  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) ) ( 1  /  i ) )
73 eqid 2438 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) )  =  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) )
74 ovex 6108 . . . . . . . . . . . . . . . . 17  |-  ( m ^ 2 )  e. 
_V
7573, 74elrnmpti 5123 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) )  <->  E. m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) ) k  =  ( m ^
2 ) )
76 elfznn 11082 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  m  e.  NN )
7776adantl 454 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  ->  m  e.  NN )
7877nnrpd 10649 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  ->  m  e.  RR+ )
7978rprege0d 10657 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m  e.  RR  /\  0  <_  m )
)
80 sqrsq 12077 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m  e.  RR  /\  0  <_  m )  -> 
( sqr `  (
m ^ 2 ) )  =  m )
8179, 80syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( sqr `  (
m ^ 2 ) )  =  m )
8281, 77eqeltrd 2512 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( sqr `  (
m ^ 2 ) )  e.  NN )
83 fveq2 5730 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  ( m ^
2 )  ->  ( sqr `  k )  =  ( sqr `  (
m ^ 2 ) ) )
8483eleq1d 2504 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( m ^
2 )  ->  (
( sqr `  k
)  e.  NN  <->  ( sqr `  ( m ^ 2 ) )  e.  NN ) )
8582, 84syl5ibrcom 215 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( k  =  ( m ^ 2 )  ->  ( sqr `  k
)  e.  NN ) )
8685rexlimdva 2832 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( E. m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) ) k  =  ( m ^
2 )  ->  ( sqr `  k )  e.  NN ) )
8775, 86syl5bi 210 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( k  e.  ran  ( m  e.  (
1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) )  ->  ( sqr `  k
)  e.  NN ) )
8887imp 420 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  ( sqr `  k
)  e.  NN )
89 iftrue 3747 . . . . . . . . . . . . . 14  |-  ( ( sqr `  k )  e.  NN  ->  if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  =  1 )
9088, 89syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  =  1 )
9190oveq1d 6098 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  =  ( 1  /  ( sqr `  k ) ) )
9291sumeq2dv 12499 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ran  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  / 
( sqr `  k
) )  =  sum_ k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) ( 1  /  ( sqr `  k ) ) )
93 fveq2 5730 . . . . . . . . . . . . 13  |-  ( k  =  ( i ^
2 )  ->  ( sqr `  k )  =  ( sqr `  (
i ^ 2 ) ) )
9493oveq2d 6099 . . . . . . . . . . . 12  |-  ( k  =  ( i ^
2 )  ->  (
1  /  ( sqr `  k ) )  =  ( 1  /  ( sqr `  ( i ^
2 ) ) ) )
9577nnsqcld 11545 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m ^ 2 )  e.  NN )
9669rpred 10650 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( sqr `  x
)  e.  RR )
97 fznnfl 11245 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( sqr `  x )  e.  RR  ->  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  <->  ( m  e.  NN  /\  m  <_ 
( sqr `  x
) ) ) )
9896, 97syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  <->  ( m  e.  NN  /\  m  <_ 
( sqr `  x
) ) ) )
9998simplbda 609 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  ->  m  <_  ( sqr `  x
) )
10069adantr 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( sqr `  x
)  e.  RR+ )
101100rprege0d 10657 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( ( sqr `  x
)  e.  RR  /\  0  <_  ( sqr `  x
) ) )
102 le2sq 11458 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( m  e.  RR  /\  0  <_  m )  /\  ( ( sqr `  x
)  e.  RR  /\  0  <_  ( sqr `  x
) ) )  -> 
( m  <_  ( sqr `  x )  <->  ( m ^ 2 )  <_ 
( ( sqr `  x
) ^ 2 ) ) )
10379, 101, 102syl2anc 644 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m  <_  ( sqr `  x )  <->  ( m ^ 2 )  <_ 
( ( sqr `  x
) ^ 2 ) ) )
10499, 103mpbid 203 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m ^ 2 )  <_  ( ( sqr `  x ) ^
2 ) )
10527rpred 10650 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR )
106105adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  ->  x  e.  RR )
107106recnd 9116 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  ->  x  e.  CC )
108107sqsqrd 12243 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( ( sqr `  x
) ^ 2 )  =  x )
109104, 108breqtrd 4238 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m ^ 2 )  <_  x )
110 fznnfl 11245 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR  ->  (
( m ^ 2 )  e.  ( 1 ... ( |_ `  x ) )  <->  ( (
m ^ 2 )  e.  NN  /\  (
m ^ 2 )  <_  x ) ) )
111106, 110syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( ( m ^
2 )  e.  ( 1 ... ( |_
`  x ) )  <-> 
( ( m ^
2 )  e.  NN  /\  ( m ^ 2 )  <_  x )
) )
11295, 109, 111mpbir2and 890 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m ^ 2 )  e.  ( 1 ... ( |_ `  x ) ) )
113112ex 425 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  -> 
( m ^ 2 )  e.  ( 1 ... ( |_ `  x ) ) ) )
11476nnrpd 10649 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  m  e.  RR+ )
115114rprege0d 10657 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  ( m  e.  RR  /\  0  <_  m ) )
11662nnrpd 10649 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  i  e.  RR+ )
117116rprege0d 10657 . . . . . . . . . . . . . . . 16  |-  ( i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  ( i  e.  RR  /\  0  <_ 
i ) )
118 sq11 11456 . . . . . . . . . . . . . . . 16  |-  ( ( ( m  e.  RR  /\  0  <_  m )  /\  ( i  e.  RR  /\  0  <_  i )
)  ->  ( (
m ^ 2 )  =  ( i ^
2 )  <->  m  =  i ) )
119115, 117, 118syl2an 465 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) ) )  ->  ( ( m ^ 2 )  =  ( i ^ 2 )  <->  m  =  i
) )
120119a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( ( m ^
2 )  =  ( i ^ 2 )  <-> 
m  =  i ) ) )
121113, 120dom2lem 7149 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) -1-1-> ( 1 ... ( |_ `  x ) ) )
122 f1f1orn 5687 . . . . . . . . . . . . 13  |-  ( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) -1-1-> ( 1 ... ( |_ `  x
) )  ->  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) -1-1-onto-> ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) )
123121, 122syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) -1-1-onto-> ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) )
124 oveq1 6090 . . . . . . . . . . . . . 14  |-  ( m  =  i  ->  (
m ^ 2 )  =  ( i ^
2 ) )
125124, 73, 74fvmpt3i 5811 . . . . . . . . . . . . 13  |-  ( i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  ( (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) `
 i )  =  ( i ^ 2 ) )
126125adantl 454 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) `  i )  =  ( i ^
2 ) )
127 f1f 5641 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) -1-1-> ( 1 ... ( |_ `  x
) )  ->  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) --> ( 1 ... ( |_ `  x
) ) )
128 frn 5599 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) --> ( 1 ... ( |_ `  x
) )  ->  ran  ( m  e.  (
1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) 
C_  ( 1 ... ( |_ `  x
) ) )
129121, 127, 1283syl 19 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) )  C_  ( 1 ... ( |_ `  x ) ) )
130129sselda 3350 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  k  e.  ( 1 ... ( |_
`  x ) ) )
131 0re 9093 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
13217, 131keepel 3798 . . . . . . . . . . . . . . . 16  |-  if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  e.  RR
133 rerpdivcl 10641 . . . . . . . . . . . . . . . 16  |-  ( ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  e.  RR  /\  ( sqr `  k )  e.  RR+ )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  e.  RR )
134132, 56, 133sylancr 646 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  e.  RR )
135134recnd 9116 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  e.  CC )
136130, 135syldan 458 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  e.  CC )
13791, 136eqeltrrd 2513 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  ( 1  / 
( sqr `  k
) )  e.  CC )
13894, 61, 123, 126, 137fsumf1o 12519 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ran  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) ( 1  /  ( sqr `  k ) )  =  sum_ i  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) ) ( 1  /  ( sqr `  ( i ^ 2 ) ) ) )
13992, 138eqtrd 2470 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ran  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  / 
( sqr `  k
) )  =  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) ( 1  /  ( sqr `  (
i ^ 2 ) ) ) )
140 eldif 3332 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ( 1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) )  <->  ( k  e.  ( 1 ... ( |_ `  x ) )  /\  -.  k  e. 
ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )
14151ad2antrl 710 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  k  e.  NN )
142141nncnd 10018 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  k  e.  CC )
143142sqsqrd 12243 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( ( sqr `  k ) ^
2 )  =  k )
144 simprr 735 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( sqr `  k )  e.  NN )
145 fznnfl 11245 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  e.  RR  ->  (
k  e.  ( 1 ... ( |_ `  x ) )  <->  ( k  e.  NN  /\  k  <_  x ) ) )
146105, 145syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( k  e.  ( 1 ... ( |_
`  x ) )  <-> 
( k  e.  NN  /\  k  <_  x )
) )
147146simplbda 609 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  <_  x
)
148147adantrr 699 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  k  <_  x )
149141nnrpd 10649 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  k  e.  RR+ )
150149rprege0d 10657 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( k  e.  RR  /\  0  <_ 
k ) )
15127adantr 453 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  x  e.  RR+ )
152151rprege0d 10657 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( x  e.  RR  /\  0  <_  x ) )
153 sqrle 12068 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( k  e.  RR  /\  0  <_  k )  /\  ( x  e.  RR  /\  0  <_  x )
)  ->  ( k  <_  x  <->  ( sqr `  k
)  <_  ( sqr `  x ) ) )
154150, 152, 153syl2anc 644 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( k  <_  x  <->  ( sqr `  k
)  <_  ( sqr `  x ) ) )
155148, 154mpbid 203 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( sqr `  k )  <_  ( sqr `  x ) )
15669adantr 453 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( sqr `  x )  e.  RR+ )
157156rpred 10650 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( sqr `  x )  e.  RR )
158 fznnfl 11245 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( sqr `  x )  e.  RR  ->  (
( sqr `  k
)  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  <->  ( ( sqr `  k )  e.  NN  /\  ( sqr `  k )  <_  ( sqr `  x ) ) ) )
159157, 158syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( ( sqr `  k )  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  <->  ( ( sqr `  k )  e.  NN  /\  ( sqr `  k )  <_  ( sqr `  x ) ) ) )
160144, 155, 159mpbir2and 890 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( sqr `  k )  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) ) )
161143, 141eqeltrd 2512 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( ( sqr `  k ) ^
2 )  e.  NN )
162 oveq1 6090 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  ( sqr `  k
)  ->  ( m ^ 2 )  =  ( ( sqr `  k
) ^ 2 ) )
16373, 162elrnmpt1s 5120 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( sqr `  k
)  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  /\  (
( sqr `  k
) ^ 2 )  e.  NN )  -> 
( ( sqr `  k
) ^ 2 )  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )
164160, 161, 163syl2anc 644 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( ( sqr `  k ) ^
2 )  e.  ran  ( m  e.  (
1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) )
165143, 164eqeltrrd 2513 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  k  e.  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) )
166165expr 600 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  k )  e.  NN  ->  k  e.  ran  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) ) )
167166con3d 128 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( -.  k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) )  ->  -.  ( sqr `  k )  e.  NN ) )
168167impr 604 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  -.  k  e. 
ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  ->  -.  ( sqr `  k
)  e.  NN )
169140, 168sylan2b 463 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  ->  -.  ( sqr `  k
)  e.  NN )
170 iffalse 3748 . . . . . . . . . . . . . 14  |-  ( -.  ( sqr `  k
)  e.  NN  ->  if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  =  0 )
171169, 170syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  ->  if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  =  0 )
172171oveq1d 6098 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  -> 
( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  / 
( sqr `  k
) )  =  ( 0  /  ( sqr `  k ) ) )
173 eldifi 3471 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ( 1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) )  ->  k  e.  ( 1 ... ( |_ `  x ) ) )
174173, 56sylan2 462 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  -> 
( sqr `  k
)  e.  RR+ )
175174rpcnne0d 10659 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  -> 
( ( sqr `  k
)  e.  CC  /\  ( sqr `  k )  =/=  0 ) )
176 div0 9708 . . . . . . . . . . . . 13  |-  ( ( ( sqr `  k
)  e.  CC  /\  ( sqr `  k )  =/=  0 )  -> 
( 0  /  ( sqr `  k ) )  =  0 )
177175, 176syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  -> 
( 0  /  ( sqr `  k ) )  =  0 )
178172, 177eqtrd 2470 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  -> 
( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  / 
( sqr `  k
) )  =  0 )
179129, 136, 178, 39fsumss 12521 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ran  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  / 
( sqr `  k
) )  =  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  /  ( sqr `  k ) ) )
18063nnrpd 10649 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
i  e.  RR+ )
181180rprege0d 10657 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( i  e.  RR  /\  0  <_  i )
)
182 sqrsq 12077 . . . . . . . . . . . . 13  |-  ( ( i  e.  RR  /\  0  <_  i )  -> 
( sqr `  (
i ^ 2 ) )  =  i )
183181, 182syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( sqr `  (
i ^ 2 ) )  =  i )
184183oveq2d 6099 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( 1  /  ( sqr `  ( i ^
2 ) ) )  =  ( 1  / 
i ) )
185184sumeq2dv 12499 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) ( 1  /  ( sqr `  (
i ^ 2 ) ) )  =  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) ( 1  /  i ) )
186139, 179, 1853eqtr3d 2478 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  /  ( sqr `  k ) )  = 
sum_ i  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) ) ( 1  /  i ) )
187132a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  e.  RR )
18842ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  N  e.  NN )
18947ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D
)
19048ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  X : (
Base `  Z ) --> RR )
19140, 41, 188, 43, 44, 45, 46, 189, 190, 54dchrisum0flb 21206 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  <_ 
( F `  k
) )
192187, 53, 56, 191lediv1dd 10704 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  <_  (
( F `  k
)  /  ( sqr `  k ) ) )
19339, 134, 57, 192fsumle 12580 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  /  ( sqr `  k ) )  <_  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) )
194186, 193eqbrtrrd 4236 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) ( 1  /  i )  <_  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) )
19522, 65, 58, 72, 194letrd 9229 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  /  2 )  <_  sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( F `  k )  /  ( sqr `  k ) ) )
19658leabsd 12219 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) )  <_ 
( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) ) )
19722, 58, 60, 195, 196letrd 9229 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  /  2 )  <_  ( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) ) )
19838, 197eqbrtrd 4234 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
( log `  x
)  /  2 ) )  <_  ( abs ` 
sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( F `  k )  /  ( sqr `  k ) ) ) )
19918, 19, 21, 12, 198o1le 12448 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( log `  x
)  /  2 ) )  e.  O ( 1 ) )
2006, 12, 16, 199o1mul2 12420 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( 2  x.  (
( log `  x
)  /  2 ) ) )  e.  O
( 1 ) )
20110, 200eqeltrrd 2513 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( log `  x ) )  e.  O ( 1 ) )
2021, 201mto 170 1  |-  -.  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   E.wrex 2708   {crab 2711   _Vcvv 2958    \ cdif 3319    C_ wss 3322   ifcif 3741   class class class wbr 4214    e. cmpt 4268   ran crn 4881   -->wf 5452   -1-1->wf1 5453   -1-1-onto->wf1o 5455   ` cfv 5456  (class class class)co 6083   CCcc 8990   RRcr 8991   0cc0 8992   1c1 8993    x. cmul 8997    < clt 9122    <_ cle 9123    / cdiv 9679   NNcn 10002   2c2 10051   RR+crp 10614   ...cfz 11045   |_cfl 11203   ^cexp 11384   sqrcsqr 12040   abscabs 12041   O (
1 )co1 12282   sum_csu 12481    || cdivides 12854   Basecbs 13471   0gc0g 13725   ZRHomczrh 16780  ℤ/nczn 16783   logclog 20454  DChrcdchr 21018
This theorem is referenced by:  dchrisum0  21216
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070  ax-addf 9071  ax-mulf 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-fal 1330  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-disj 4185  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-tpos 6481  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-omul 6731  df-er 6907  df-ec 6909  df-qs 6913  df-map 7022  df-pm 7023  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-fi 7418  df-sup 7448  df-oi 7481  df-card 7828  df-acn 7831  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-q 10577  df-rp 10615  df-xneg 10712  df-xadd 10713  df-xmul 10714  df-ioo 10922  df-ioc 10923  df-ico 10924  df-icc 10925  df-fz 11046  df-fzo 11138  df-fl 11204  df-mod 11253  df-seq 11326  df-exp 11385  df-fac 11569  df-bc 11596  df-hash 11621  df-shft 11884  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-limsup 12267  df-clim 12284  df-rlim 12285  df-o1 12286  df-lo1 12287  df-sum 12482  df-ef 12672  df-e 12673  df-sin 12674  df-cos 12675  df-pi 12677  df-dvds 12855  df-gcd 13009  df-prm 13082  df-numer 13129  df-denom 13130  df-pc 13213  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-starv 13546  df-sca 13547  df-vsca 13548  df-tset 13550  df-ple 13551  df-ds 13553  df-unif 13554  df-hom 13555  df-cco 13556  df-rest 13652  df-topn 13653  df-topgen 13669  df-pt 13670  df-prds 13673  df-xrs 13728  df-0g 13729  df-gsum 13730  df-qtop 13735  df-imas 13736  df-divs 13737  df-xps 13738  df-mre 13813  df-mrc 13814  df-acs 13816  df-mnd 14692  df-mhm 14740  df-submnd 14741  df-grp 14814  df-minusg 14815  df-sbg 14816  df-mulg 14817  df-subg 14943  df-nsg 14944  df-eqg 14945  df-ghm 15006  df-cntz 15118  df-od 15169  df-cmn 15416  df-abl 15417  df-mgp 15651  df-rng 15665  df-cring 15666  df-ur 15667  df-oppr 15730  df-dvdsr 15748  df-unit 15749  df-invr 15779  df-dvr 15790  df-rnghom 15821  df-drng 15839  df-subrg 15868  df-lmod 15954  df-lss 16011  df-lsp 16050  df-sra 16246  df-rgmod 16247  df-lidl 16248  df-rsp 16249  df-2idl 16305  df-psmet 16696  df-xmet 16697  df-met 16698  df-bl 16699  df-mopn 16700  df-fbas 16701  df-fg 16702  df-cnfld 16706  df-zrh 16784  df-zn 16787  df-top 16965  df-bases 16967  df-topon 16968  df-topsp 16969  df-cld 17085  df-ntr 17086  df-cls 17087  df-nei 17164  df-lp 17202  df-perf 17203  df-cn 17293  df-cnp 17294  df-haus 17381  df-tx 17596  df-hmeo 17789  df-fil 17880  df-fm 17972  df-flim 17973  df-flf 17974  df-xms 18352  df-ms 18353  df-tms 18354  df-cncf 18910  df-limc 19755  df-dv 19756  df-log 20456  df-cxp 20457  df-em 20833  df-dchr 21019
  Copyright terms: Public domain W3C validator