MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0fval Unicode version

Theorem dchrisum0fval 21066
Description: Value of the function  F, the divisor sum of a Dirichlet character. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
dchrisum0f.f  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
Assertion
Ref Expression
dchrisum0fval  |-  ( A  e.  NN  ->  ( F `  A )  =  sum_ t  e.  {
q  e.  NN  | 
q  ||  A } 
( X `  ( L `  t )
) )
Distinct variable groups:    t,  .1.    t, F    q, b, t, v, A    N, q,
t    ph, t    t, D    L, b, t, v    X, b, t, v
Allowed substitution hints:    ph( v, q, b)    D( v, q, b)    .1. ( v, q, b)    F( v, q, b)    G( v, t, q, b)    L( q)    N( v, b)    X( q)    Z( v, t, q, b)

Proof of Theorem dchrisum0fval
StepHypRef Expression
1 breq2 4157 . . . . 5  |-  ( b  =  A  ->  (
q  ||  b  <->  q  ||  A ) )
21rabbidv 2891 . . . 4  |-  ( b  =  A  ->  { q  e.  NN  |  q 
||  b }  =  { q  e.  NN  |  q  ||  A }
)
32sumeq1d 12422 . . 3  |-  ( b  =  A  ->  sum_ v  e.  { q  e.  NN  |  q  ||  b }  ( X `  ( L `  v )
)  =  sum_ v  e.  { q  e.  NN  |  q  ||  A } 
( X `  ( L `  v )
) )
4 fveq2 5668 . . . . 5  |-  ( v  =  t  ->  ( L `  v )  =  ( L `  t ) )
54fveq2d 5672 . . . 4  |-  ( v  =  t  ->  ( X `  ( L `  v ) )  =  ( X `  ( L `  t )
) )
65cbvsumv 12417 . . 3  |-  sum_ v  e.  { q  e.  NN  |  q  ||  A } 
( X `  ( L `  v )
)  =  sum_ t  e.  { q  e.  NN  |  q  ||  A } 
( X `  ( L `  t )
)
73, 6syl6eq 2435 . 2  |-  ( b  =  A  ->  sum_ v  e.  { q  e.  NN  |  q  ||  b }  ( X `  ( L `  v )
)  =  sum_ t  e.  { q  e.  NN  |  q  ||  A } 
( X `  ( L `  t )
) )
8 dchrisum0f.f . 2  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
9 sumex 12408 . 2  |-  sum_ t  e.  { q  e.  NN  |  q  ||  A } 
( X `  ( L `  t )
)  e.  _V
107, 8, 9fvmpt 5745 1  |-  ( A  e.  NN  ->  ( F `  A )  =  sum_ t  e.  {
q  e.  NN  | 
q  ||  A } 
( X `  ( L `  t )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1717   {crab 2653   class class class wbr 4153    e. cmpt 4207   ` cfv 5394   NNcn 9932   sum_csu 12406    || cdivides 12779   Basecbs 13396   0gc0g 13650   ZRHomczrh 16701  ℤ/nczn 16704  DChrcdchr 20883
This theorem is referenced by:  dchrisum0fmul  21067  dchrisum0flblem1  21069  dchrisum0  21081
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-recs 6569  df-rdg 6604  df-seq 11251  df-sum 12407
  Copyright terms: Public domain W3C validator