MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem1b Unicode version

Theorem dchrisum0lem1b 20664
Description: Lemma for dchrisum0lem1 20665. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
dchrisum0lem1.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
dchrisum0.c  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
dchrisum0.s  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  S )
dchrisum0.1  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) ) )
Assertion
Ref Expression
dchrisum0lem1b  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  <_  ( ( 2  x.  C )  / 
( sqr `  x
) ) )
Distinct variable groups:    x, m, y,  .1.    m, d, x, y, C    F, d, x, y   
a, d, m, x, y    m, N, x, y    ph, d, m, x    S, d, m, x, y   
x, W    m, Z, x, y    D, m, x, y    L, a, d, m, x, y    X, a, d, m, x, y   
m, F
Allowed substitution hints:    ph( y, a)    C( a)    D( a, d)    S( a)    .1. ( a, d)    F( a)    G( x, y, m, a, d)    N( a, d)    W( y, m, a, d)    Z( a, d)

Proof of Theorem dchrisum0lem1b
StepHypRef Expression
1 fzfid 11035 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  e. 
Fin )
2 ssun2 3339 . . . . . . 7  |-  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  C_  ( ( 1 ... ( |_ `  x
) )  u.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )
3 simpr 447 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
43rprege0d 10397 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
5 flge0nn0 10948 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
64, 5syl 15 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  e.  NN0 )
7 nn0p1nn 10003 . . . . . . . . . . 11  |-  ( ( |_ `  x )  e.  NN0  ->  ( ( |_ `  x )  +  1 )  e.  NN )
86, 7syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  +  1 )  e.  NN )
98adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( |_ `  x )  +  1 )  e.  NN )
10 nnuz 10263 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
119, 10syl6eleq 2373 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( |_ `  x )  +  1 )  e.  (
ZZ>= `  1 ) )
12 dchrisum0lem1a 20635 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  <_  ( ( x ^
2 )  /  d
)  /\  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  (
ZZ>= `  ( |_ `  x ) ) ) )
1312simprd 449 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  (
ZZ>= `  ( |_ `  x ) ) )
14 fzsplit2 10815 . . . . . . . 8  |-  ( ( ( ( |_ `  x )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  ( ( x ^ 2 )  / 
d ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  (
( x ^ 2 )  /  d ) ) )  =  ( ( 1 ... ( |_ `  x ) )  u.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ) )
1511, 13, 14syl2anc 642 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  =  ( ( 1 ... ( |_ `  x
) )  u.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ) )
162, 15syl5sseqr 3227 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  C_  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )
1716sselda 3180 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )
18 rpvmasum2.g . . . . . . 7  |-  G  =  (DChr `  N )
19 rpvmasum.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
20 rpvmasum2.d . . . . . . 7  |-  D  =  ( Base `  G
)
21 rpvmasum.l . . . . . . 7  |-  L  =  ( ZRHom `  Z
)
22 rpvmasum2.w . . . . . . . . . . 11  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
23 ssrab2 3258 . . . . . . . . . . 11  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
2422, 23eqsstri 3208 . . . . . . . . . 10  |-  W  C_  ( D  \  {  .1.  } )
25 dchrisum0.b . . . . . . . . . 10  |-  ( ph  ->  X  e.  W )
2624, 25sseldi 3178 . . . . . . . . 9  |-  ( ph  ->  X  e.  ( D 
\  {  .1.  }
) )
27 eldifi 3298 . . . . . . . . 9  |-  ( X  e.  ( D  \  {  .1.  } )  ->  X  e.  D )
2826, 27syl 15 . . . . . . . 8  |-  ( ph  ->  X  e.  D )
2928ad3antrrr 710 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  X  e.  D )
30 elfzelz 10798 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  d ) ) )  ->  m  e.  ZZ )
3130adantl 452 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  ZZ )
3218, 19, 20, 21, 29, 31dchrzrhcl 20484 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
33 elfznn 10819 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  d ) ) )  ->  m  e.  NN )
3433adantl 452 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  NN )
3534nnrpd 10389 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  RR+ )
3635rpsqrcld 11894 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  m )  e.  RR+ )
3736rpcnd 10392 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  m )  e.  CC )
3836rpne0d 10395 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  m )  =/=  0
)
3932, 37, 38divcld 9536 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
4017, 39syldan 456 . . . 4  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
411, 40fsumcl 12206 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  e.  CC )
4241abscld 11918 . 2  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  e.  RR )
43 1z 10053 . . . . . . . . 9  |-  1  e.  ZZ
4443a1i 10 . . . . . . . 8  |-  ( ph  ->  1  e.  ZZ )
4528adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  X  e.  D )
46 nnz 10045 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  m  e.  ZZ )
4746adantl 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  ZZ )
4818, 19, 20, 21, 45, 47dchrzrhcl 20484 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( X `
 ( L `  m ) )  e.  CC )
49 nnrp 10363 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  m  e.  RR+ )
5049adantl 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  RR+ )
5150rpsqrcld 11894 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  e.  RR+ )
5251rpcnd 10392 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  e.  CC )
5351rpne0d 10395 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  =/=  0
)
5448, 52, 53divcld 9536 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  e.  CC )
55 dchrisum0lem1.f . . . . . . . . . . 11  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
56 fveq2 5525 . . . . . . . . . . . . . 14  |-  ( a  =  m  ->  ( L `  a )  =  ( L `  m ) )
5756fveq2d 5529 . . . . . . . . . . . . 13  |-  ( a  =  m  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  m )
) )
58 fveq2 5525 . . . . . . . . . . . . 13  |-  ( a  =  m  ->  ( sqr `  a )  =  ( sqr `  m
) )
5957, 58oveq12d 5876 . . . . . . . . . . . 12  |-  ( a  =  m  ->  (
( X `  ( L `  a )
)  /  ( sqr `  a ) )  =  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
6059cbvmptv 4111 . . . . . . . . . . 11  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) ) )  =  ( m  e.  NN  |->  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
6155, 60eqtri 2303 . . . . . . . . . 10  |-  F  =  ( m  e.  NN  |->  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
6254, 61fmptd 5684 . . . . . . . . 9  |-  ( ph  ->  F : NN --> CC )
63 ffvelrn 5663 . . . . . . . . 9  |-  ( ( F : NN --> CC  /\  m  e.  NN )  ->  ( F `  m
)  e.  CC )
6462, 63sylan 457 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m )  e.  CC )
6510, 44, 64serf 11074 . . . . . . 7  |-  ( ph  ->  seq  1 (  +  ,  F ) : NN --> CC )
6665ad2antrr 706 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  seq  1
(  +  ,  F
) : NN --> CC )
673rpregt0d 10396 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  < 
x ) )
6867adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  RR  /\  0  < 
x ) )
6968simpld 445 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
70 1re 8837 . . . . . . . . . 10  |-  1  e.  RR
7170a1i 10 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
72 elfznn 10819 . . . . . . . . . . 11  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
7372adantl 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
7473nnred 9761 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR )
7573nnge1d 9788 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  d )
763rpred 10390 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
77 fznnfl 10966 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  x ) )  <->  ( d  e.  NN  /\  d  <_  x ) ) )
7876, 77syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( d  e.  ( 1 ... ( |_ `  x ) )  <-> 
( d  e.  NN  /\  d  <_  x )
) )
7978simplbda 607 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  <_  x )
8071, 74, 69, 75, 79letrd 8973 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  x )
81 flge1nn 10949 . . . . . . . 8  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
8269, 80, 81syl2anc 642 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  x )  e.  NN )
8310uztrn2 10245 . . . . . . 7  |-  ( ( ( |_ `  x
)  e.  NN  /\  ( |_ `  ( ( x ^ 2 )  /  d ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )  ->  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  NN )
8482, 13, 83syl2anc 642 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  NN )
85 ffvelrn 5663 . . . . . 6  |-  ( (  seq  1 (  +  ,  F ) : NN --> CC  /\  ( |_ `  ( ( x ^ 2 )  / 
d ) )  e.  NN )  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  e.  CC )
8666, 84, 85syl2anc 642 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  e.  CC )
87 dchrisum0.s . . . . . . 7  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  S )
88 climcl 11973 . . . . . . 7  |-  (  seq  1 (  +  ,  F )  ~~>  S  ->  S  e.  CC )
8987, 88syl 15 . . . . . 6  |-  ( ph  ->  S  e.  CC )
9089ad2antrr 706 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  S  e.  CC )
9186, 90subcld 9157 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S )  e.  CC )
9291abscld 11918 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  e.  RR )
93 ffvelrn 5663 . . . . . 6  |-  ( (  seq  1 (  +  ,  F ) : NN --> CC  /\  ( |_ `  x )  e.  NN )  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) )  e.  CC )
9466, 82, 93syl2anc 642 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) )  e.  CC )
9590, 94subcld 9157 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S  -  (  seq  1
(  +  ,  F
) `  ( |_ `  x ) ) )  e.  CC )
9695abscld 11918 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( S  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) )  e.  RR )
9792, 96readdcld 8862 . 2  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S ) )  +  ( abs `  ( S  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) )  e.  RR )
98 2re 9815 . . . . . 6  |-  2  e.  RR
99 dchrisum0.c . . . . . . . 8  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
100 elrege0 10746 . . . . . . . 8  |-  ( C  e.  ( 0 [,) 
+oo )  <->  ( C  e.  RR  /\  0  <_  C ) )
10199, 100sylib 188 . . . . . . 7  |-  ( ph  ->  ( C  e.  RR  /\  0  <_  C )
)
102101simpld 445 . . . . . 6  |-  ( ph  ->  C  e.  RR )
103 remulcl 8822 . . . . . 6  |-  ( ( 2  e.  RR  /\  C  e.  RR )  ->  ( 2  x.  C
)  e.  RR )
10498, 102, 103sylancr 644 . . . . 5  |-  ( ph  ->  ( 2  x.  C
)  e.  RR )
105104adantr 451 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  C )  e.  RR )
1063rpsqrcld 11894 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sqr `  x )  e.  RR+ )
107105, 106rerpdivcld 10417 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  e.  RR )
108107adantr 451 . 2  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  e.  RR )
109 ssun1 3338 . . . . . . . . . . 11  |-  ( 1 ... ( |_ `  x ) )  C_  ( ( 1 ... ( |_ `  x
) )  u.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )
110109, 15syl5sseqr 3227 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  x ) )  C_  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )
111110sselda 3180 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  x ) ) )  ->  m  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )
112 ovex 5883 . . . . . . . . . . 11  |-  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) )  e.  _V
11359, 55, 112fvmpt3i 5605 . . . . . . . . . 10  |-  ( m  e.  NN  ->  ( F `  m )  =  ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) ) )
11434, 113syl 15 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( F `  m )  =  ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )
115111, 114syldan 456 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  x ) ) )  ->  ( F `  m )  =  ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )
11682, 10syl6eleq 2373 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  x )  e.  (
ZZ>= `  1 ) )
117111, 39syldan 456 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  x ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
118115, 116, 117fsumser 12203 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  =  (  seq  1 (  +  ,  F ) `
 ( |_ `  x ) ) )
119118, 94eqeltrd 2357 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  e.  CC )
120119, 41pncan2d 9159 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  + 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  -  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
121 reflcl 10928 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
12269, 121syl 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  x )  e.  RR )
123122ltp1d 9687 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  x )  <  (
( |_ `  x
)  +  1 ) )
124 fzdisj 10817 . . . . . . . . 9  |-  ( ( |_ `  x )  <  ( ( |_
`  x )  +  1 )  ->  (
( 1 ... ( |_ `  x ) )  i^i  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) )  =  (/) )
125123, 124syl 15 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
1 ... ( |_ `  x ) )  i^i  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )  =  (/) )
126 fzfid 11035 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  e. 
Fin )
127125, 15, 126, 39fsumsplit 12212 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  + 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) ) )
12884, 10syl6eleq 2373 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  (
ZZ>= `  1 ) )
129114, 128, 39fsumser 12203 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  =  (  seq  1 (  +  ,  F ) `
 ( |_ `  ( ( x ^
2 )  /  d
) ) ) )
130127, 129eqtr3d 2317 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) ) )  =  (  seq  1 (  +  ,  F ) `
 ( |_ `  ( ( x ^
2 )  /  d
) ) ) )
131130, 118oveq12d 5876 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  + 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  -  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  (  seq  1
(  +  ,  F
) `  ( |_ `  x ) ) ) )
132120, 131eqtr3d 2317 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  =  ( (  seq  1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) )
133132fveq2d 5529 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) )
13486, 94, 90abs3difd 11942 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) )  <_ 
( ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  +  ( abs `  ( S  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) ) )
135133, 134eqbrtrd 4043 . 2  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  <_  ( ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  +  ( abs `  ( S  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) ) )
136102ad2antrr 706 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  C  e.  RR )
137 simplr 731 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
138137rpsqrcld 11894 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  x )  e.  RR+ )
139136, 138rerpdivcld 10417 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  ( sqr `  x
) )  e.  RR )
140 2z 10054 . . . . . . . . . 10  |-  2  e.  ZZ
141 rpexpcl 11122 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  2  e.  ZZ )  ->  (
x ^ 2 )  e.  RR+ )
1423, 140, 141sylancl 643 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR+ )
143142adantr 451 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x ^ 2 )  e.  RR+ )
14473nnrpd 10389 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR+ )
145143, 144rpdivcld 10407 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  /  d )  e.  RR+ )
146145rpsqrcld 11894 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  d
) )  e.  RR+ )
147136, 146rerpdivcld 10417 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  ( sqr `  (
( x ^ 2 )  /  d ) ) )  e.  RR )
148142rpred 10390 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR )
149 nndivre 9781 . . . . . . . 8  |-  ( ( ( x ^ 2 )  e.  RR  /\  d  e.  NN )  ->  ( ( x ^
2 )  /  d
)  e.  RR )
150148, 72, 149syl2an 463 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  /  d )  e.  RR )
15112simpld 445 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  <_  ( ( x ^ 2 )  /  d ) )
15271, 69, 150, 80, 151letrd 8973 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  ( ( x ^ 2 )  /  d ) )
153 elicopnf 10739 . . . . . . . 8  |-  ( 1  e.  RR  ->  (
( ( x ^
2 )  /  d
)  e.  ( 1 [,)  +oo )  <->  ( (
( x ^ 2 )  /  d )  e.  RR  /\  1  <_  ( ( x ^
2 )  /  d
) ) ) )
15470, 153ax-mp 8 . . . . . . 7  |-  ( ( ( x ^ 2 )  /  d )  e.  ( 1 [,) 
+oo )  <->  ( (
( x ^ 2 )  /  d )  e.  RR  /\  1  <_  ( ( x ^
2 )  /  d
) ) )
155150, 152, 154sylanbrc 645 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  /  d )  e.  ( 1 [,)  +oo ) )
156 dchrisum0.1 . . . . . . 7  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) ) )
157156ad2antrr 706 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  A. y  e.  ( 1 [,)  +oo ) ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) ) )
158 fveq2 5525 . . . . . . . . . . 11  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  ( |_ `  y )  =  ( |_ `  (
( x ^ 2 )  /  d ) ) )
159158fveq2d 5529 . . . . . . . . . 10  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  =  (  seq  1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) ) )
160159oveq1d 5873 . . . . . . . . 9  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S )  =  ( (  seq  1 (  +  ,  F ) `
 ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )
161160fveq2d 5529 . . . . . . . 8  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  =  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) ) )
162 fveq2 5525 . . . . . . . . 9  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  ( sqr `  y )  =  ( sqr `  (
( x ^ 2 )  /  d ) ) )
163162oveq2d 5874 . . . . . . . 8  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  ( C  /  ( sqr `  y
) )  =  ( C  /  ( sqr `  ( ( x ^
2 )  /  d
) ) ) )
164161, 163breq12d 4036 . . . . . . 7  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  (
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) )  <-> 
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  <_ 
( C  /  ( sqr `  ( ( x ^ 2 )  / 
d ) ) ) ) )
165164rspcv 2880 . . . . . 6  |-  ( ( ( x ^ 2 )  /  d )  e.  ( 1 [,) 
+oo )  ->  ( A. y  e.  (
1 [,)  +oo ) ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) )  ->  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S ) )  <_  ( C  / 
( sqr `  (
( x ^ 2 )  /  d ) ) ) ) )
166155, 157, 165sylc 56 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  <_ 
( C  /  ( sqr `  ( ( x ^ 2 )  / 
d ) ) ) )
167138rpregt0d 10396 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  x )  e.  RR  /\  0  < 
( sqr `  x
) ) )
168146rpregt0d 10396 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  ( ( x ^ 2 )  / 
d ) )  e.  RR  /\  0  < 
( sqr `  (
( x ^ 2 )  /  d ) ) ) )
169101ad2antrr 706 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  e.  RR  /\  0  <_  C ) )
170137rprege0d 10397 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  RR  /\  0  <_  x ) )
171145rprege0d 10397 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( x ^ 2 )  /  d )  e.  RR  /\  0  <_  ( ( x ^
2 )  /  d
) ) )
172 sqrle 11746 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  0  <_  x )  /\  ( ( ( x ^ 2 )  / 
d )  e.  RR  /\  0  <_  ( (
x ^ 2 )  /  d ) ) )  ->  ( x  <_  ( ( x ^
2 )  /  d
)  <->  ( sqr `  x
)  <_  ( sqr `  ( ( x ^
2 )  /  d
) ) ) )
173170, 171, 172syl2anc 642 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  <_  ( ( x ^
2 )  /  d
)  <->  ( sqr `  x
)  <_  ( sqr `  ( ( x ^
2 )  /  d
) ) ) )
174151, 173mpbid 201 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  x )  <_  ( sqr `  ( ( x ^ 2 )  / 
d ) ) )
175 lediv2a 9650 . . . . . 6  |-  ( ( ( ( ( sqr `  x )  e.  RR  /\  0  <  ( sqr `  x ) )  /\  ( ( sqr `  (
( x ^ 2 )  /  d ) )  e.  RR  /\  0  <  ( sqr `  (
( x ^ 2 )  /  d ) ) )  /\  ( C  e.  RR  /\  0  <_  C ) )  /\  ( sqr `  x )  <_  ( sqr `  (
( x ^ 2 )  /  d ) ) )  ->  ( C  /  ( sqr `  (
( x ^ 2 )  /  d ) ) )  <_  ( C  /  ( sqr `  x
) ) )
176167, 168, 169, 174, 175syl31anc 1185 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  ( sqr `  (
( x ^ 2 )  /  d ) ) )  <_  ( C  /  ( sqr `  x
) ) )
17792, 147, 139, 166, 176letrd 8973 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  <_ 
( C  /  ( sqr `  x ) ) )
17890, 94abssubd 11935 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( S  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) )  =  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  x ) )  -  S ) ) )
179 elicopnf 10739 . . . . . . . 8  |-  ( 1  e.  RR  ->  (
x  e.  ( 1 [,)  +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
18070, 179ax-mp 8 . . . . . . 7  |-  ( x  e.  ( 1 [,) 
+oo )  <->  ( x  e.  RR  /\  1  <_  x ) )
18169, 80, 180sylanbrc 645 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  ( 1 [,)  +oo ) )
182 fveq2 5525 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( |_ `  y )  =  ( |_ `  x
) )
183182fveq2d 5529 . . . . . . . . . 10  |-  ( y  =  x  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  =  (  seq  1
(  +  ,  F
) `  ( |_ `  x ) ) )
184183oveq1d 5873 . . . . . . . . 9  |-  ( y  =  x  ->  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S )  =  ( (  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  S ) )
185184fveq2d 5529 . . . . . . . 8  |-  ( y  =  x  ->  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  =  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  S ) ) )
186 fveq2 5525 . . . . . . . . 9  |-  ( y  =  x  ->  ( sqr `  y )  =  ( sqr `  x
) )
187186oveq2d 5874 . . . . . . . 8  |-  ( y  =  x  ->  ( C  /  ( sqr `  y
) )  =  ( C  /  ( sqr `  x ) ) )
188185, 187breq12d 4036 . . . . . . 7  |-  ( y  =  x  ->  (
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) )  <-> 
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  S ) )  <_ 
( C  /  ( sqr `  x ) ) ) )
189188rspcv 2880 . . . . . 6  |-  ( x  e.  ( 1 [,) 
+oo )  ->  ( A. y  e.  (
1 [,)  +oo ) ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) )  ->  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  x ) )  -  S ) )  <_  ( C  / 
( sqr `  x
) ) ) )
190181, 157, 189sylc 56 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  S ) )  <_ 
( C  /  ( sqr `  x ) ) )
191178, 190eqbrtrd 4043 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( S  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) )  <_  ( C  /  ( sqr `  x
) ) )
19292, 96, 139, 139, 177, 191le2addd 9390 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S ) )  +  ( abs `  ( S  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) )  <_ 
( ( C  / 
( sqr `  x
) )  +  ( C  /  ( sqr `  x ) ) ) )
193 2cn 9816 . . . . . 6  |-  2  e.  CC
194193a1i 10 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  2  e.  CC )
195102adantr 451 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  C  e.  RR )
196195recnd 8861 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  C  e.  CC )
197196adantr 451 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  C  e.  CC )
198106rpcnne0d 10399 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( sqr `  x )  e.  CC  /\  ( sqr `  x )  =/=  0
) )
199198adantr 451 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  x )  e.  CC  /\  ( sqr `  x )  =/=  0
) )
200 divass 9442 . . . . 5  |-  ( ( 2  e.  CC  /\  C  e.  CC  /\  (
( sqr `  x
)  e.  CC  /\  ( sqr `  x )  =/=  0 ) )  ->  ( ( 2  x.  C )  / 
( sqr `  x
) )  =  ( 2  x.  ( C  /  ( sqr `  x
) ) ) )
201194, 197, 199, 200syl3anc 1182 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  =  ( 2  x.  ( C  /  ( sqr `  x
) ) ) )
202139recnd 8861 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  ( sqr `  x
) )  e.  CC )
2032022timesd 9954 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( C  / 
( sqr `  x
) ) )  =  ( ( C  / 
( sqr `  x
) )  +  ( C  /  ( sqr `  x ) ) ) )
204201, 203eqtrd 2315 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  =  ( ( C  /  ( sqr `  x ) )  +  ( C  / 
( sqr `  x
) ) ) )
205192, 204breqtrrd 4049 . 2  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S ) )  +  ( abs `  ( S  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) )  <_ 
( ( 2  x.  C )  /  ( sqr `  x ) ) )
20642, 97, 108, 135, 205letrd 8973 1  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  <_  ( ( 2  x.  C )  / 
( sqr `  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   {crab 2547    \ cdif 3149    u. cun 3150    i^i cin 3151   (/)c0 3455   {csn 3640   class class class wbr 4023    e. cmpt 4077   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    +oocpnf 8864    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   RR+crp 10354   [,)cico 10658   ...cfz 10782   |_cfl 10924    seq cseq 11046   ^cexp 11104   sqrcsqr 11718   abscabs 11719    ~~> cli 11958   sum_csu 12158   Basecbs 13148   0gc0g 13400   ZRHomczrh 16451  ℤ/nczn 16454  DChrcdchr 20471
This theorem is referenced by:  dchrisum0lem1  20665
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-ec 6662  df-qs 6666  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-rp 10355  df-ico 10662  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-0g 13404  df-imas 13411  df-divs 13412  df-mnd 14367  df-mhm 14415  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-nsg 14619  df-eqg 14620  df-ghm 14681  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-rnghom 15496  df-subrg 15543  df-lmod 15629  df-lss 15690  df-lsp 15729  df-sra 15925  df-rgmod 15926  df-lidl 15927  df-rsp 15928  df-2idl 15984  df-cnfld 16378  df-zrh 16455  df-zn 16458  df-dchr 20472
  Copyright terms: Public domain W3C validator