MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem1b Structured version   Unicode version

Theorem dchrisum0lem1b 21210
Description: Lemma for dchrisum0lem1 21211. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
dchrisum0lem1.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
dchrisum0.c  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
dchrisum0.s  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  S )
dchrisum0.1  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) ) )
Assertion
Ref Expression
dchrisum0lem1b  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  <_  ( ( 2  x.  C )  / 
( sqr `  x
) ) )
Distinct variable groups:    x, m, y,  .1.    m, d, x, y, C    F, d, x, y   
a, d, m, x, y    m, N, x, y    ph, d, m, x    S, d, m, x, y   
x, W    m, Z, x, y    D, m, x, y    L, a, d, m, x, y    X, a, d, m, x, y   
m, F
Allowed substitution hints:    ph( y, a)    C( a)    D( a, d)    S( a)    .1. ( a, d)    F( a)    G( x, y, m, a, d)    N( a, d)    W( y, m, a, d)    Z( a, d)

Proof of Theorem dchrisum0lem1b
StepHypRef Expression
1 fzfid 11313 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  e. 
Fin )
2 ssun2 3512 . . . . . . 7  |-  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  C_  ( ( 1 ... ( |_ `  x
) )  u.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )
3 simpr 449 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
43rprege0d 10656 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
5 flge0nn0 11226 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
64, 5syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  e.  NN0 )
7 nn0p1nn 10260 . . . . . . . . . . 11  |-  ( ( |_ `  x )  e.  NN0  ->  ( ( |_ `  x )  +  1 )  e.  NN )
86, 7syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  +  1 )  e.  NN )
98adantr 453 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( |_ `  x )  +  1 )  e.  NN )
10 nnuz 10522 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
119, 10syl6eleq 2527 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( |_ `  x )  +  1 )  e.  (
ZZ>= `  1 ) )
12 dchrisum0lem1a 21181 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  <_  ( ( x ^
2 )  /  d
)  /\  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  (
ZZ>= `  ( |_ `  x ) ) ) )
1312simprd 451 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  (
ZZ>= `  ( |_ `  x ) ) )
14 fzsplit2 11077 . . . . . . . 8  |-  ( ( ( ( |_ `  x )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  ( ( x ^ 2 )  / 
d ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  (
( x ^ 2 )  /  d ) ) )  =  ( ( 1 ... ( |_ `  x ) )  u.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ) )
1511, 13, 14syl2anc 644 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  =  ( ( 1 ... ( |_ `  x
) )  u.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ) )
162, 15syl5sseqr 3398 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  C_  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )
1716sselda 3349 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )
18 rpvmasum2.g . . . . . . 7  |-  G  =  (DChr `  N )
19 rpvmasum.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
20 rpvmasum2.d . . . . . . 7  |-  D  =  ( Base `  G
)
21 rpvmasum.l . . . . . . 7  |-  L  =  ( ZRHom `  Z
)
22 rpvmasum2.w . . . . . . . . . . 11  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
23 ssrab2 3429 . . . . . . . . . . 11  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
2422, 23eqsstri 3379 . . . . . . . . . 10  |-  W  C_  ( D  \  {  .1.  } )
25 dchrisum0.b . . . . . . . . . 10  |-  ( ph  ->  X  e.  W )
2624, 25sseldi 3347 . . . . . . . . 9  |-  ( ph  ->  X  e.  ( D 
\  {  .1.  }
) )
2726eldifad 3333 . . . . . . . 8  |-  ( ph  ->  X  e.  D )
2827ad3antrrr 712 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  X  e.  D )
29 elfzelz 11060 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  d ) ) )  ->  m  e.  ZZ )
3029adantl 454 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  ZZ )
3118, 19, 20, 21, 28, 30dchrzrhcl 21030 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
32 elfznn 11081 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  d ) ) )  ->  m  e.  NN )
3332adantl 454 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  NN )
3433nnrpd 10648 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  RR+ )
3534rpsqrcld 12215 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  m )  e.  RR+ )
3635rpcnd 10651 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  m )  e.  CC )
3735rpne0d 10654 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  m )  =/=  0
)
3831, 36, 37divcld 9791 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
3917, 38syldan 458 . . . 4  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
401, 39fsumcl 12528 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  e.  CC )
4140abscld 12239 . 2  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  e.  RR )
42 1z 10312 . . . . . . . . 9  |-  1  e.  ZZ
4342a1i 11 . . . . . . . 8  |-  ( ph  ->  1  e.  ZZ )
4427adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  X  e.  D )
45 nnz 10304 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  m  e.  ZZ )
4645adantl 454 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  ZZ )
4718, 19, 20, 21, 44, 46dchrzrhcl 21030 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( X `
 ( L `  m ) )  e.  CC )
48 nnrp 10622 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  m  e.  RR+ )
4948adantl 454 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  RR+ )
5049rpsqrcld 12215 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  e.  RR+ )
5150rpcnd 10651 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  e.  CC )
5250rpne0d 10654 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  =/=  0
)
5347, 51, 52divcld 9791 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  e.  CC )
54 dchrisum0lem1.f . . . . . . . . . . 11  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
55 fveq2 5729 . . . . . . . . . . . . . 14  |-  ( a  =  m  ->  ( L `  a )  =  ( L `  m ) )
5655fveq2d 5733 . . . . . . . . . . . . 13  |-  ( a  =  m  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  m )
) )
57 fveq2 5729 . . . . . . . . . . . . 13  |-  ( a  =  m  ->  ( sqr `  a )  =  ( sqr `  m
) )
5856, 57oveq12d 6100 . . . . . . . . . . . 12  |-  ( a  =  m  ->  (
( X `  ( L `  a )
)  /  ( sqr `  a ) )  =  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
5958cbvmptv 4301 . . . . . . . . . . 11  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) ) )  =  ( m  e.  NN  |->  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
6054, 59eqtri 2457 . . . . . . . . . 10  |-  F  =  ( m  e.  NN  |->  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
6153, 60fmptd 5894 . . . . . . . . 9  |-  ( ph  ->  F : NN --> CC )
6261ffvelrnda 5871 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m )  e.  CC )
6310, 43, 62serf 11352 . . . . . . 7  |-  ( ph  ->  seq  1 (  +  ,  F ) : NN --> CC )
6463ad2antrr 708 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  seq  1
(  +  ,  F
) : NN --> CC )
653rpregt0d 10655 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  < 
x ) )
6665adantr 453 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  RR  /\  0  < 
x ) )
6766simpld 447 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
68 1re 9091 . . . . . . . . . 10  |-  1  e.  RR
6968a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
70 elfznn 11081 . . . . . . . . . . 11  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
7170adantl 454 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
7271nnred 10016 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR )
7371nnge1d 10043 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  d )
743rpred 10649 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
75 fznnfl 11244 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  x ) )  <->  ( d  e.  NN  /\  d  <_  x ) ) )
7674, 75syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( d  e.  ( 1 ... ( |_ `  x ) )  <-> 
( d  e.  NN  /\  d  <_  x )
) )
7776simplbda 609 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  <_  x )
7869, 72, 67, 73, 77letrd 9228 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  x )
79 flge1nn 11227 . . . . . . . 8  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
8067, 78, 79syl2anc 644 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  x )  e.  NN )
8110uztrn2 10504 . . . . . . 7  |-  ( ( ( |_ `  x
)  e.  NN  /\  ( |_ `  ( ( x ^ 2 )  /  d ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )  ->  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  NN )
8280, 13, 81syl2anc 644 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  NN )
8364, 82ffvelrnd 5872 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  e.  CC )
84 dchrisum0.s . . . . . . 7  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  S )
85 climcl 12294 . . . . . . 7  |-  (  seq  1 (  +  ,  F )  ~~>  S  ->  S  e.  CC )
8684, 85syl 16 . . . . . 6  |-  ( ph  ->  S  e.  CC )
8786ad2antrr 708 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  S  e.  CC )
8883, 87subcld 9412 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S )  e.  CC )
8988abscld 12239 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  e.  RR )
9064, 80ffvelrnd 5872 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) )  e.  CC )
9187, 90subcld 9412 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S  -  (  seq  1
(  +  ,  F
) `  ( |_ `  x ) ) )  e.  CC )
9291abscld 12239 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( S  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) )  e.  RR )
9389, 92readdcld 9116 . 2  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S ) )  +  ( abs `  ( S  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) )  e.  RR )
94 2re 10070 . . . . . 6  |-  2  e.  RR
95 dchrisum0.c . . . . . . . 8  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
96 elrege0 11008 . . . . . . . 8  |-  ( C  e.  ( 0 [,) 
+oo )  <->  ( C  e.  RR  /\  0  <_  C ) )
9795, 96sylib 190 . . . . . . 7  |-  ( ph  ->  ( C  e.  RR  /\  0  <_  C )
)
9897simpld 447 . . . . . 6  |-  ( ph  ->  C  e.  RR )
99 remulcl 9076 . . . . . 6  |-  ( ( 2  e.  RR  /\  C  e.  RR )  ->  ( 2  x.  C
)  e.  RR )
10094, 98, 99sylancr 646 . . . . 5  |-  ( ph  ->  ( 2  x.  C
)  e.  RR )
101100adantr 453 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  C )  e.  RR )
1023rpsqrcld 12215 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sqr `  x )  e.  RR+ )
103101, 102rerpdivcld 10676 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  e.  RR )
104103adantr 453 . 2  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  e.  RR )
105 ssun1 3511 . . . . . . . . . . 11  |-  ( 1 ... ( |_ `  x ) )  C_  ( ( 1 ... ( |_ `  x
) )  u.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )
106105, 15syl5sseqr 3398 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  x ) )  C_  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )
107106sselda 3349 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  x ) ) )  ->  m  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )
108 ovex 6107 . . . . . . . . . . 11  |-  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) )  e.  _V
10958, 54, 108fvmpt3i 5810 . . . . . . . . . 10  |-  ( m  e.  NN  ->  ( F `  m )  =  ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) ) )
11033, 109syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( F `  m )  =  ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )
111107, 110syldan 458 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  x ) ) )  ->  ( F `  m )  =  ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )
11280, 10syl6eleq 2527 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  x )  e.  (
ZZ>= `  1 ) )
113107, 38syldan 458 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  x ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
114111, 112, 113fsumser 12525 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  =  (  seq  1 (  +  ,  F ) `
 ( |_ `  x ) ) )
115114, 90eqeltrd 2511 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  e.  CC )
116115, 40pncan2d 9414 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  + 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  -  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
117 reflcl 11206 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
11867, 117syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  x )  e.  RR )
119118ltp1d 9942 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  x )  <  (
( |_ `  x
)  +  1 ) )
120 fzdisj 11079 . . . . . . . . 9  |-  ( ( |_ `  x )  <  ( ( |_
`  x )  +  1 )  ->  (
( 1 ... ( |_ `  x ) )  i^i  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) )  =  (/) )
121119, 120syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
1 ... ( |_ `  x ) )  i^i  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )  =  (/) )
122 fzfid 11313 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  e. 
Fin )
123121, 15, 122, 38fsumsplit 12534 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  + 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) ) )
12482, 10syl6eleq 2527 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  (
ZZ>= `  1 ) )
125110, 124, 38fsumser 12525 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  =  (  seq  1 (  +  ,  F ) `
 ( |_ `  ( ( x ^
2 )  /  d
) ) ) )
126123, 125eqtr3d 2471 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) ) )  =  (  seq  1 (  +  ,  F ) `
 ( |_ `  ( ( x ^
2 )  /  d
) ) ) )
127126, 114oveq12d 6100 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  + 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  -  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  (  seq  1
(  +  ,  F
) `  ( |_ `  x ) ) ) )
128116, 127eqtr3d 2471 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  =  ( (  seq  1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) )
129128fveq2d 5733 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) )
13083, 90, 87abs3difd 12263 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) )  <_ 
( ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  +  ( abs `  ( S  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) ) )
131129, 130eqbrtrd 4233 . 2  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  <_  ( ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  +  ( abs `  ( S  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) ) )
13298ad2antrr 708 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  C  e.  RR )
133 simplr 733 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
134133rpsqrcld 12215 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  x )  e.  RR+ )
135132, 134rerpdivcld 10676 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  ( sqr `  x
) )  e.  RR )
136 2z 10313 . . . . . . . . . 10  |-  2  e.  ZZ
137 rpexpcl 11401 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  2  e.  ZZ )  ->  (
x ^ 2 )  e.  RR+ )
1383, 136, 137sylancl 645 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR+ )
139138adantr 453 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x ^ 2 )  e.  RR+ )
14071nnrpd 10648 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR+ )
141139, 140rpdivcld 10666 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  /  d )  e.  RR+ )
142141rpsqrcld 12215 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  d
) )  e.  RR+ )
143132, 142rerpdivcld 10676 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  ( sqr `  (
( x ^ 2 )  /  d ) ) )  e.  RR )
144138rpred 10649 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR )
145 nndivre 10036 . . . . . . . 8  |-  ( ( ( x ^ 2 )  e.  RR  /\  d  e.  NN )  ->  ( ( x ^
2 )  /  d
)  e.  RR )
146144, 70, 145syl2an 465 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  /  d )  e.  RR )
14712simpld 447 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  <_  ( ( x ^ 2 )  /  d ) )
14869, 67, 146, 78, 147letrd 9228 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  ( ( x ^ 2 )  /  d ) )
149 elicopnf 11001 . . . . . . . 8  |-  ( 1  e.  RR  ->  (
( ( x ^
2 )  /  d
)  e.  ( 1 [,)  +oo )  <->  ( (
( x ^ 2 )  /  d )  e.  RR  /\  1  <_  ( ( x ^
2 )  /  d
) ) ) )
15068, 149ax-mp 8 . . . . . . 7  |-  ( ( ( x ^ 2 )  /  d )  e.  ( 1 [,) 
+oo )  <->  ( (
( x ^ 2 )  /  d )  e.  RR  /\  1  <_  ( ( x ^
2 )  /  d
) ) )
151146, 148, 150sylanbrc 647 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  /  d )  e.  ( 1 [,)  +oo ) )
152 dchrisum0.1 . . . . . . 7  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) ) )
153152ad2antrr 708 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  A. y  e.  ( 1 [,)  +oo ) ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) ) )
154 fveq2 5729 . . . . . . . . . . 11  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  ( |_ `  y )  =  ( |_ `  (
( x ^ 2 )  /  d ) ) )
155154fveq2d 5733 . . . . . . . . . 10  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  =  (  seq  1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) ) )
156155oveq1d 6097 . . . . . . . . 9  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S )  =  ( (  seq  1 (  +  ,  F ) `
 ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )
157156fveq2d 5733 . . . . . . . 8  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  =  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) ) )
158 fveq2 5729 . . . . . . . . 9  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  ( sqr `  y )  =  ( sqr `  (
( x ^ 2 )  /  d ) ) )
159158oveq2d 6098 . . . . . . . 8  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  ( C  /  ( sqr `  y
) )  =  ( C  /  ( sqr `  ( ( x ^
2 )  /  d
) ) ) )
160157, 159breq12d 4226 . . . . . . 7  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  (
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) )  <-> 
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  <_ 
( C  /  ( sqr `  ( ( x ^ 2 )  / 
d ) ) ) ) )
161160rspcv 3049 . . . . . 6  |-  ( ( ( x ^ 2 )  /  d )  e.  ( 1 [,) 
+oo )  ->  ( A. y  e.  (
1 [,)  +oo ) ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) )  ->  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S ) )  <_  ( C  / 
( sqr `  (
( x ^ 2 )  /  d ) ) ) ) )
162151, 153, 161sylc 59 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  <_ 
( C  /  ( sqr `  ( ( x ^ 2 )  / 
d ) ) ) )
163134rpregt0d 10655 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  x )  e.  RR  /\  0  < 
( sqr `  x
) ) )
164142rpregt0d 10655 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  ( ( x ^ 2 )  / 
d ) )  e.  RR  /\  0  < 
( sqr `  (
( x ^ 2 )  /  d ) ) ) )
16597ad2antrr 708 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  e.  RR  /\  0  <_  C ) )
166133rprege0d 10656 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  RR  /\  0  <_  x ) )
167141rprege0d 10656 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( x ^ 2 )  /  d )  e.  RR  /\  0  <_  ( ( x ^
2 )  /  d
) ) )
168 sqrle 12067 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  0  <_  x )  /\  ( ( ( x ^ 2 )  / 
d )  e.  RR  /\  0  <_  ( (
x ^ 2 )  /  d ) ) )  ->  ( x  <_  ( ( x ^
2 )  /  d
)  <->  ( sqr `  x
)  <_  ( sqr `  ( ( x ^
2 )  /  d
) ) ) )
169166, 167, 168syl2anc 644 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  <_  ( ( x ^
2 )  /  d
)  <->  ( sqr `  x
)  <_  ( sqr `  ( ( x ^
2 )  /  d
) ) ) )
170147, 169mpbid 203 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  x )  <_  ( sqr `  ( ( x ^ 2 )  / 
d ) ) )
171 lediv2a 9905 . . . . . 6  |-  ( ( ( ( ( sqr `  x )  e.  RR  /\  0  <  ( sqr `  x ) )  /\  ( ( sqr `  (
( x ^ 2 )  /  d ) )  e.  RR  /\  0  <  ( sqr `  (
( x ^ 2 )  /  d ) ) )  /\  ( C  e.  RR  /\  0  <_  C ) )  /\  ( sqr `  x )  <_  ( sqr `  (
( x ^ 2 )  /  d ) ) )  ->  ( C  /  ( sqr `  (
( x ^ 2 )  /  d ) ) )  <_  ( C  /  ( sqr `  x
) ) )
172163, 164, 165, 170, 171syl31anc 1188 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  ( sqr `  (
( x ^ 2 )  /  d ) ) )  <_  ( C  /  ( sqr `  x
) ) )
17389, 143, 135, 162, 172letrd 9228 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  <_ 
( C  /  ( sqr `  x ) ) )
17487, 90abssubd 12256 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( S  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) )  =  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  x ) )  -  S ) ) )
175 elicopnf 11001 . . . . . . . 8  |-  ( 1  e.  RR  ->  (
x  e.  ( 1 [,)  +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
17668, 175ax-mp 8 . . . . . . 7  |-  ( x  e.  ( 1 [,) 
+oo )  <->  ( x  e.  RR  /\  1  <_  x ) )
17767, 78, 176sylanbrc 647 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  ( 1 [,)  +oo ) )
178 fveq2 5729 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( |_ `  y )  =  ( |_ `  x
) )
179178fveq2d 5733 . . . . . . . . . 10  |-  ( y  =  x  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  =  (  seq  1
(  +  ,  F
) `  ( |_ `  x ) ) )
180179oveq1d 6097 . . . . . . . . 9  |-  ( y  =  x  ->  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S )  =  ( (  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  S ) )
181180fveq2d 5733 . . . . . . . 8  |-  ( y  =  x  ->  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  =  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  S ) ) )
182 fveq2 5729 . . . . . . . . 9  |-  ( y  =  x  ->  ( sqr `  y )  =  ( sqr `  x
) )
183182oveq2d 6098 . . . . . . . 8  |-  ( y  =  x  ->  ( C  /  ( sqr `  y
) )  =  ( C  /  ( sqr `  x ) ) )
184181, 183breq12d 4226 . . . . . . 7  |-  ( y  =  x  ->  (
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) )  <-> 
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  S ) )  <_ 
( C  /  ( sqr `  x ) ) ) )
185184rspcv 3049 . . . . . 6  |-  ( x  e.  ( 1 [,) 
+oo )  ->  ( A. y  e.  (
1 [,)  +oo ) ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) )  ->  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  x ) )  -  S ) )  <_  ( C  / 
( sqr `  x
) ) ) )
186177, 153, 185sylc 59 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  S ) )  <_ 
( C  /  ( sqr `  x ) ) )
187174, 186eqbrtrd 4233 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( S  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) )  <_  ( C  /  ( sqr `  x
) ) )
18889, 92, 135, 135, 173, 187le2addd 9645 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S ) )  +  ( abs `  ( S  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) )  <_ 
( ( C  / 
( sqr `  x
) )  +  ( C  /  ( sqr `  x ) ) ) )
189 2cn 10071 . . . . . 6  |-  2  e.  CC
190189a1i 11 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  2  e.  CC )
19198adantr 453 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  C  e.  RR )
192191recnd 9115 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  C  e.  CC )
193192adantr 453 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  C  e.  CC )
194102rpcnne0d 10658 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( sqr `  x )  e.  CC  /\  ( sqr `  x )  =/=  0
) )
195194adantr 453 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  x )  e.  CC  /\  ( sqr `  x )  =/=  0
) )
196 divass 9697 . . . . 5  |-  ( ( 2  e.  CC  /\  C  e.  CC  /\  (
( sqr `  x
)  e.  CC  /\  ( sqr `  x )  =/=  0 ) )  ->  ( ( 2  x.  C )  / 
( sqr `  x
) )  =  ( 2  x.  ( C  /  ( sqr `  x
) ) ) )
197190, 193, 195, 196syl3anc 1185 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  =  ( 2  x.  ( C  /  ( sqr `  x
) ) ) )
198135recnd 9115 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  ( sqr `  x
) )  e.  CC )
1991982timesd 10211 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( C  / 
( sqr `  x
) ) )  =  ( ( C  / 
( sqr `  x
) )  +  ( C  /  ( sqr `  x ) ) ) )
200197, 199eqtrd 2469 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  =  ( ( C  /  ( sqr `  x ) )  +  ( C  / 
( sqr `  x
) ) ) )
201188, 200breqtrrd 4239 . 2  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S ) )  +  ( abs `  ( S  -  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) )  <_ 
( ( 2  x.  C )  /  ( sqr `  x ) ) )
20241, 93, 104, 131, 201letrd 9228 1  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  <_  ( ( 2  x.  C )  / 
( sqr `  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2600   A.wral 2706   {crab 2710    \ cdif 3318    u. cun 3319    i^i cin 3320   (/)c0 3629   {csn 3815   class class class wbr 4213    e. cmpt 4267   -->wf 5451   ` cfv 5455  (class class class)co 6082   CCcc 8989   RRcr 8990   0cc0 8991   1c1 8992    + caddc 8994    x. cmul 8996    +oocpnf 9118    < clt 9121    <_ cle 9122    - cmin 9292    / cdiv 9678   NNcn 10001   2c2 10050   NN0cn0 10222   ZZcz 10283   ZZ>=cuz 10489   RR+crp 10613   [,)cico 10919   ...cfz 11044   |_cfl 11202    seq cseq 11324   ^cexp 11383   sqrcsqr 12039   abscabs 12040    ~~> cli 12279   sum_csu 12480   Basecbs 13470   0gc0g 13724   ZRHomczrh 16779  ℤ/nczn 16782  DChrcdchr 21017
This theorem is referenced by:  dchrisum0lem1  21211
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-inf2 7597  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068  ax-pre-sup 9069  ax-addf 9070  ax-mulf 9071
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-se 4543  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-isom 5464  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-tpos 6480  df-riota 6550  df-recs 6634  df-rdg 6669  df-1o 6725  df-oadd 6729  df-er 6906  df-ec 6908  df-qs 6912  df-map 7021  df-en 7111  df-dom 7112  df-sdom 7113  df-fin 7114  df-sup 7447  df-oi 7480  df-card 7827  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-div 9679  df-nn 10002  df-2 10059  df-3 10060  df-4 10061  df-5 10062  df-6 10063  df-7 10064  df-8 10065  df-9 10066  df-10 10067  df-n0 10223  df-z 10284  df-dec 10384  df-uz 10490  df-rp 10614  df-ico 10923  df-fz 11045  df-fzo 11137  df-fl 11203  df-seq 11325  df-exp 11384  df-hash 11620  df-cj 11905  df-re 11906  df-im 11907  df-sqr 12041  df-abs 12042  df-clim 12283  df-sum 12481  df-struct 13472  df-ndx 13473  df-slot 13474  df-base 13475  df-sets 13476  df-ress 13477  df-plusg 13543  df-mulr 13544  df-starv 13545  df-sca 13546  df-vsca 13547  df-tset 13549  df-ple 13550  df-ds 13552  df-unif 13553  df-0g 13728  df-imas 13735  df-divs 13736  df-mnd 14691  df-mhm 14739  df-grp 14813  df-minusg 14814  df-sbg 14815  df-mulg 14816  df-subg 14942  df-nsg 14943  df-eqg 14944  df-ghm 15005  df-cmn 15415  df-abl 15416  df-mgp 15650  df-rng 15664  df-cring 15665  df-ur 15666  df-oppr 15729  df-dvdsr 15747  df-unit 15748  df-rnghom 15820  df-subrg 15867  df-lmod 15953  df-lss 16010  df-lsp 16049  df-sra 16245  df-rgmod 16246  df-lidl 16247  df-rsp 16248  df-2idl 16304  df-cnfld 16705  df-zrh 16783  df-zn 16786  df-dchr 21018
  Copyright terms: Public domain W3C validator