MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem2 Structured version   Unicode version

Theorem dchrisum0lem2 21202
Description: Lemma for dchrisum0 21204. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
dchrisum0lem1.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
dchrisum0.c  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
dchrisum0.s  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  S )
dchrisum0.1  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) ) )
dchrisum0lem2.h  |-  H  =  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )
dchrisum0lem2.u  |-  ( ph  ->  H  ~~> r  U )
dchrisum0lem2.k  |-  K  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
dchrisum0lem2.e  |-  ( ph  ->  E  e.  ( 0 [,)  +oo ) )
dchrisum0lem2.t  |-  ( ph  ->  seq  1 (  +  ,  K )  ~~>  T )
dchrisum0lem2.3  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  K ) `
 ( |_ `  y ) )  -  T ) )  <_ 
( E  /  y
) )
Assertion
Ref Expression
dchrisum0lem2  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O ( 1 ) )
Distinct variable groups:    x, m, y,  .1.    m, d, x, y, C    F, d, x, y   
a, d, m, x, y    E, d, m, x, y    m, K, y   
m, N, x, y    ph, d, m, x    T, d, m, x, y    S, d, m, x, y    U, m, x    x, W    m, Z, x, y    D, m, x, y    L, a, d, m, x, y    X, a, d, m, x, y    m, F
Allowed substitution hints:    ph( y, a)    C( a)    D( a, d)    S( a)    T( a)    U( y, a, d)    .1. ( a,
d)    E( a)    F( a)    G( x, y, m, a, d)    H( x, y, m, a, d)    K( x, a, d)    N( a, d)    W( y, m, a, d)    Z( a, d)

Proof of Theorem dchrisum0lem2
StepHypRef Expression
1 2cn 10060 . . . 4  |-  2  e.  CC
21a1i 11 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  2  e.  CC )
3 rpcn 10610 . . . . 5  |-  ( x  e.  RR+  ->  x  e.  CC )
43adantl 453 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  CC )
5 fzfid 11302 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
6 rpvmasum2.g . . . . . . 7  |-  G  =  (DChr `  N )
7 rpvmasum.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
8 rpvmasum2.d . . . . . . 7  |-  D  =  ( Base `  G
)
9 rpvmasum.l . . . . . . 7  |-  L  =  ( ZRHom `  Z
)
10 rpvmasum2.w . . . . . . . . . . 11  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
11 ssrab2 3420 . . . . . . . . . . 11  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
1210, 11eqsstri 3370 . . . . . . . . . 10  |-  W  C_  ( D  \  {  .1.  } )
13 dchrisum0.b . . . . . . . . . 10  |-  ( ph  ->  X  e.  W )
1412, 13sseldi 3338 . . . . . . . . 9  |-  ( ph  ->  X  e.  ( D 
\  {  .1.  }
) )
1514eldifad 3324 . . . . . . . 8  |-  ( ph  ->  X  e.  D )
1615ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D )
17 elfzelz 11049 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  ZZ )
1817adantl 453 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  e.  ZZ )
196, 7, 8, 9, 16, 18dchrzrhcl 21019 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
20 elfznn 11070 . . . . . . . . 9  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  NN )
2120nnrpd 10637 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  RR+ )
2221adantl 453 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  e.  RR+ )
2322rpcnd 10640 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  e.  CC )
2422rpne0d 10643 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  =/=  0 )
2519, 23, 24divcld 9780 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  m ) )  /  m )  e.  CC )
265, 25fsumcl 12517 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  m )  e.  CC )
274, 26mulcld 9098 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  x.  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  m ) )  e.  CC )
28 rpssre 10612 . . . . 5  |-  RR+  C_  RR
29 o1const 12403 . . . . 5  |-  ( (
RR+  C_  RR  /\  2  e.  CC )  ->  (
x  e.  RR+  |->  2 )  e.  O ( 1 ) )
3028, 1, 29mp2an 654 . . . 4  |-  ( x  e.  RR+  |->  2 )  e.  O ( 1 )
3130a1i 11 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  2 )  e.  O
( 1 ) )
3228a1i 11 . . . 4  |-  ( ph  -> 
RR+  C_  RR )
33 1re 9080 . . . . 5  |-  1  e.  RR
3433a1i 11 . . . 4  |-  ( ph  ->  1  e.  RR )
35 dchrisum0lem2.e . . . . 5  |-  ( ph  ->  E  e.  ( 0 [,)  +oo ) )
36 elrege0 10997 . . . . . 6  |-  ( E  e.  ( 0 [,) 
+oo )  <->  ( E  e.  RR  /\  0  <_  E ) )
3736simplbi 447 . . . . 5  |-  ( E  e.  ( 0 [,) 
+oo )  ->  E  e.  RR )
3835, 37syl 16 . . . 4  |-  ( ph  ->  E  e.  RR )
394, 26absmuld 12246 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) )  =  ( ( abs `  x )  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) )
40 rprege0 10616 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
4140adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
42 absid 12091 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( abs `  x
)  =  x )
4341, 42syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  x )  =  x )
4443oveq1d 6088 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( abs `  x )  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) )  =  ( x  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) )
4539, 44eqtrd 2467 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) )  =  ( x  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) )
4645adantrr 698 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
x  x.  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  m ) ) )  =  ( x  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  m ) ) ) )
4726adantrr 698 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m )  e.  CC )
4847subid1d 9390 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  m )  -  0 )  = 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m ) )
4920adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  e.  NN )
50 fveq2 5720 . . . . . . . . . . . . . . . 16  |-  ( a  =  m  ->  ( L `  a )  =  ( L `  m ) )
5150fveq2d 5724 . . . . . . . . . . . . . . 15  |-  ( a  =  m  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  m )
) )
52 id 20 . . . . . . . . . . . . . . 15  |-  ( a  =  m  ->  a  =  m )
5351, 52oveq12d 6091 . . . . . . . . . . . . . 14  |-  ( a  =  m  ->  (
( X `  ( L `  a )
)  /  a )  =  ( ( X `
 ( L `  m ) )  /  m ) )
54 dchrisum0lem2.k . . . . . . . . . . . . . 14  |-  K  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
55 ovex 6098 . . . . . . . . . . . . . 14  |-  ( ( X `  ( L `
 a ) )  /  a )  e. 
_V
5653, 54, 55fvmpt3i 5801 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  ( K `  m )  =  ( ( X `
 ( L `  m ) )  /  m ) )
5749, 56syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( K `  m )  =  ( ( X `  ( L `  m )
)  /  m ) )
5857adantlrr 702 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( K `  m )  =  ( ( X `  ( L `  m )
)  /  m ) )
59 rpregt0 10615 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
6059ad2antrl 709 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  e.  RR  /\  0  <  x ) )
6160simpld 446 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR )
62 simprr 734 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  <_  x )
63 flge1nn 11216 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
6461, 62, 63syl2anc 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  NN )
65 nnuz 10511 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
6664, 65syl6eleq 2525 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  ( ZZ>= ` 
1 ) )
6725adantlrr 702 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `
 ( L `  m ) )  /  m )  e.  CC )
6858, 66, 67fsumser 12514 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m )  =  (  seq  1
(  +  ,  K
) `  ( |_ `  x ) ) )
69 rpvmasum.a . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  NN )
70 rpvmasum2.1 . . . . . . . . . . . . . 14  |-  .1.  =  ( 0g `  G )
71 eldifsni 3920 . . . . . . . . . . . . . . 15  |-  ( X  e.  ( D  \  {  .1.  } )  ->  X  =/=  .1.  )
7214, 71syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  X  =/=  .1.  )
73 dchrisum0lem2.t . . . . . . . . . . . . . 14  |-  ( ph  ->  seq  1 (  +  ,  K )  ~~>  T )
74 dchrisum0lem2.3 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  K ) `
 ( |_ `  y ) )  -  T ) )  <_ 
( E  /  y
) )
757, 9, 69, 6, 8, 70, 15, 72, 54, 35, 73, 74, 10dchrvmaeq0 21188 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X  e.  W  <->  T  =  0 ) )
7613, 75mpbid 202 . . . . . . . . . . . 12  |-  ( ph  ->  T  =  0 )
7776adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  T  =  0 )
7877eqcomd 2440 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  =  T )
7968, 78oveq12d 6091 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  m )  -  0 )  =  ( (  seq  1
(  +  ,  K
) `  ( |_ `  x ) )  -  T ) )
8048, 79eqtr3d 2469 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m )  =  ( (  seq  1 (  +  ,  K ) `  ( |_ `  x ) )  -  T ) )
8180fveq2d 5724 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) )  =  ( abs `  (
(  seq  1 (  +  ,  K ) `
 ( |_ `  x ) )  -  T ) ) )
82 elicopnf 10990 . . . . . . . . . 10  |-  ( 1  e.  RR  ->  (
x  e.  ( 1 [,)  +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
8333, 82ax-mp 8 . . . . . . . . 9  |-  ( x  e.  ( 1 [,) 
+oo )  <->  ( x  e.  RR  /\  1  <_  x ) )
8461, 62, 83sylanbrc 646 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  ( 1 [,)  +oo ) )
8574adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  A. y  e.  (
1 [,)  +oo ) ( abs `  ( (  seq  1 (  +  ,  K ) `  ( |_ `  y ) )  -  T ) )  <_  ( E  /  y ) )
86 fveq2 5720 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  ( |_ `  y )  =  ( |_ `  x
) )
8786fveq2d 5724 . . . . . . . . . . . 12  |-  ( y  =  x  ->  (  seq  1 (  +  ,  K ) `  ( |_ `  y ) )  =  (  seq  1
(  +  ,  K
) `  ( |_ `  x ) ) )
8887oveq1d 6088 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
(  seq  1 (  +  ,  K ) `
 ( |_ `  y ) )  -  T )  =  ( (  seq  1 (  +  ,  K ) `
 ( |_ `  x ) )  -  T ) )
8988fveq2d 5724 . . . . . . . . . 10  |-  ( y  =  x  ->  ( abs `  ( (  seq  1 (  +  ,  K ) `  ( |_ `  y ) )  -  T ) )  =  ( abs `  (
(  seq  1 (  +  ,  K ) `
 ( |_ `  x ) )  -  T ) ) )
90 oveq2 6081 . . . . . . . . . 10  |-  ( y  =  x  ->  ( E  /  y )  =  ( E  /  x
) )
9189, 90breq12d 4217 . . . . . . . . 9  |-  ( y  =  x  ->  (
( abs `  (
(  seq  1 (  +  ,  K ) `
 ( |_ `  y ) )  -  T ) )  <_ 
( E  /  y
)  <->  ( abs `  (
(  seq  1 (  +  ,  K ) `
 ( |_ `  x ) )  -  T ) )  <_ 
( E  /  x
) ) )
9291rspcv 3040 . . . . . . . 8  |-  ( x  e.  ( 1 [,) 
+oo )  ->  ( A. y  e.  (
1 [,)  +oo ) ( abs `  ( (  seq  1 (  +  ,  K ) `  ( |_ `  y ) )  -  T ) )  <_  ( E  /  y )  -> 
( abs `  (
(  seq  1 (  +  ,  K ) `
 ( |_ `  x ) )  -  T ) )  <_ 
( E  /  x
) ) )
9384, 85, 92sylc 58 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
(  seq  1 (  +  ,  K ) `
 ( |_ `  x ) )  -  T ) )  <_ 
( E  /  x
) )
9481, 93eqbrtrd 4224 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) )  <_  ( E  /  x ) )
9547abscld 12228 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) )  e.  RR )
9638adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  E  e.  RR )
97 lemuldiv2 9880 . . . . . . 7  |-  ( ( ( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) )  e.  RR  /\  E  e.  RR  /\  ( x  e.  RR  /\  0  <  x ) )  -> 
( ( x  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) )  <_  E  <->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m ) )  <_  ( E  /  x ) ) )
9895, 96, 60, 97syl3anc 1184 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( x  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) )  <_  E  <->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m ) )  <_  ( E  /  x ) ) )
9994, 98mpbird 224 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  m ) ) )  <_  E
)
10046, 99eqbrtrd 4224 . . . 4  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
x  x.  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  m ) ) )  <_  E
)
10132, 27, 34, 38, 100elo1d 12320 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  m ) ) )  e.  O
( 1 ) )
1022, 27, 31, 101o1mul2 12408 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( 2  x.  (
x  x.  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  m ) ) ) )  e.  O ( 1 ) )
103 fzfid 11302 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) )  e. 
Fin )
10422rpsqrcld 12204 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  m )  e.  RR+ )
105104rpcnd 10640 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  m )  e.  CC )
106104rpne0d 10643 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  m )  =/=  0
)
10719, 105, 106divcld 9780 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
108107adantr 452 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
109 elfznn 11070 . . . . . . . . . 10  |-  ( d  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  m ) ) )  ->  d  e.  NN )
110109adantl 453 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  d  e.  NN )
111110nnrpd 10637 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  d  e.  RR+ )
112111rpsqrcld 12204 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  d )  e.  RR+ )
113112rpcnd 10640 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  d )  e.  CC )
114112rpne0d 10643 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  d )  =/=  0
)
115108, 113, 114divcld 9780 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) )  e.  CC )
116103, 115fsumcl 12517 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  CC )
1175, 116fsumcl 12517 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  CC )
118 mulcl 9064 . . . 4  |-  ( ( 2  e.  CC  /\  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  m ) )  e.  CC )  ->  ( 2  x.  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) )  e.  CC )
1191, 27, 118sylancr 645 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  ( x  x. 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m ) ) )  e.  CC )
120 2re 10059 . . . . . . . . . 10  |-  2  e.  RR
121 simpr 448 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
122 2z 10302 . . . . . . . . . . . . . 14  |-  2  e.  ZZ
123 rpexpcl 11390 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  2  e.  ZZ )  ->  (
x ^ 2 )  e.  RR+ )
124121, 122, 123sylancl 644 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR+ )
125 rpdivcl 10624 . . . . . . . . . . . . 13  |-  ( ( ( x ^ 2 )  e.  RR+  /\  m  e.  RR+ )  ->  (
( x ^ 2 )  /  m )  e.  RR+ )
126124, 21, 125syl2an 464 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  /  m )  e.  RR+ )
127126rpsqrcld 12204 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  m
) )  e.  RR+ )
128127rpred 10638 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  m
) )  e.  RR )
129 remulcl 9065 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  ( sqr `  ( ( x ^ 2 )  /  m ) )  e.  RR )  -> 
( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) )  e.  RR )
130120, 128, 129sylancr 645 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) )  e.  RR )
131130recnd 9104 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) )  e.  CC )
132107, 131mulcld 9098 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) )  e.  CC )
1335, 116, 132fsumsub 12561 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  (
2  x.  ( sqr `  ( ( x ^
2 )  /  m
) ) ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
2  x.  ( sqr `  ( ( x ^
2 )  /  m
) ) ) ) ) )
134112rpcnne0d 10647 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( sqr `  d )  e.  CC  /\  ( sqr `  d )  =/=  0
) )
135 reccl 9675 . . . . . . . . . . 11  |-  ( ( ( sqr `  d
)  e.  CC  /\  ( sqr `  d )  =/=  0 )  -> 
( 1  /  ( sqr `  d ) )  e.  CC )
136134, 135syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( 1  /  ( sqr `  d
) )  e.  CC )
137103, 136fsumcl 12517 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) )  e.  CC )
138107, 137, 131subdid 9479 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) ) ) )  =  ( ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x. 
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) ) )  -  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) ) ) )
139 fveq2 5720 . . . . . . . . . . . . . 14  |-  ( y  =  ( ( x ^ 2 )  /  m )  ->  ( |_ `  y )  =  ( |_ `  (
( x ^ 2 )  /  m ) ) )
140139oveq2d 6089 . . . . . . . . . . . . 13  |-  ( y  =  ( ( x ^ 2 )  /  m )  ->  (
1 ... ( |_ `  y ) )  =  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) )
141140sumeq1d 12485 . . . . . . . . . . . 12  |-  ( y  =  ( ( x ^ 2 )  /  m )  ->  sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  =  sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) ) )
142 fveq2 5720 . . . . . . . . . . . . 13  |-  ( y  =  ( ( x ^ 2 )  /  m )  ->  ( sqr `  y )  =  ( sqr `  (
( x ^ 2 )  /  m ) ) )
143142oveq2d 6089 . . . . . . . . . . . 12  |-  ( y  =  ( ( x ^ 2 )  /  m )  ->  (
2  x.  ( sqr `  y ) )  =  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) )
144141, 143oveq12d 6091 . . . . . . . . . . 11  |-  ( y  =  ( ( x ^ 2 )  /  m )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) ) )
145 dchrisum0lem2.h . . . . . . . . . . 11  |-  H  =  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )
146 ovex 6098 . . . . . . . . . . 11  |-  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) )  e.  _V
147144, 145, 146fvmpt3i 5801 . . . . . . . . . 10  |-  ( ( ( x ^ 2 )  /  m )  e.  RR+  ->  ( H `
 ( ( x ^ 2 )  /  m ) )  =  ( sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) ) ) )
148126, 147syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( H `  ( ( x ^
2 )  /  m
) )  =  (
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) ) ) )
149148oveq2d 6089 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) )  =  ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) ) ) ) )
150108, 113, 114divrecd 9783 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) )  =  ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( 1  /  ( sqr `  d ) ) ) )
151150sumeq2dv 12487 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  =  sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
1  /  ( sqr `  d ) ) ) )
152103, 107, 136fsummulc2 12557 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x. 
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) ) )  =  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
1  /  ( sqr `  d ) ) ) )
153151, 152eqtr4d 2470 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  =  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( 1  /  ( sqr `  d ) ) ) )
154153oveq1d 6088 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  -  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) ) )  =  ( ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( 1  /  ( sqr `  d ) ) )  -  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  (
2  x.  ( sqr `  ( ( x ^
2 )  /  m
) ) ) ) ) )
155138, 149, 1543eqtr4d 2477 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) )  =  (
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  (
2  x.  ( sqr `  ( ( x ^
2 )  /  m
) ) ) ) ) )
156155sumeq2dv 12487 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  (
2  x.  ( sqr `  ( ( x ^
2 )  /  m
) ) ) ) ) )
157 mulcl 9064 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  x  e.  CC )  ->  ( 2  x.  x
)  e.  CC )
1581, 4, 157sylancr 645 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  x )  e.  CC )
1595, 158, 25fsummulc2 12557 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  x )  x.  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  m ) )  =  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( 2  x.  x )  x.  (
( X `  ( L `  m )
)  /  m ) ) )
1602, 4, 26mulassd 9101 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  x )  x.  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  m ) )  =  ( 2  x.  ( x  x. 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m ) ) ) )
161158adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  x )  e.  CC )
162161, 107, 105, 106div12d 9816 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  x )  x.  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  /  ( sqr `  m ) ) )  =  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( 2  x.  x )  /  ( sqr `  m ) ) ) )
163104rpcnne0d 10647 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  e.  CC  /\  ( sqr `  m )  =/=  0
) )
164 divdiv1 9715 . . . . . . . . . . . . 13  |-  ( ( ( X `  ( L `  m )
)  e.  CC  /\  ( ( sqr `  m
)  e.  CC  /\  ( sqr `  m )  =/=  0 )  /\  ( ( sqr `  m
)  e.  CC  /\  ( sqr `  m )  =/=  0 ) )  ->  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  /  ( sqr `  m ) )  =  ( ( X `
 ( L `  m ) )  / 
( ( sqr `  m
)  x.  ( sqr `  m ) ) ) )
16519, 163, 163, 164syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  m
) )  =  ( ( X `  ( L `  m )
)  /  ( ( sqr `  m )  x.  ( sqr `  m
) ) ) )
16622rprege0d 10645 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( m  e.  RR  /\  0  <_  m ) )
167 remsqsqr 12052 . . . . . . . . . . . . . 14  |-  ( ( m  e.  RR  /\  0  <_  m )  -> 
( ( sqr `  m
)  x.  ( sqr `  m ) )  =  m )
168166, 167syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  x.  ( sqr `  m
) )  =  m )
169168oveq2d 6089 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( ( sqr `  m
)  x.  ( sqr `  m ) ) )  =  ( ( X `
 ( L `  m ) )  /  m ) )
170165, 169eqtr2d 2468 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  m ) )  /  m )  =  ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  m
) ) )
171170oveq2d 6089 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  x )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( 2  x.  x )  x.  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  m
) ) ) )
172124adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x ^ 2 )  e.  RR+ )
173172rprege0d 10645 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  e.  RR  /\  0  <_  ( x ^ 2 ) ) )
174 sqrdiv 12061 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x ^
2 )  e.  RR  /\  0  <_  ( x ^ 2 ) )  /\  m  e.  RR+ )  ->  ( sqr `  (
( x ^ 2 )  /  m ) )  =  ( ( sqr `  ( x ^ 2 ) )  /  ( sqr `  m
) ) )
175173, 22, 174syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  m
) )  =  ( ( sqr `  (
x ^ 2 ) )  /  ( sqr `  m ) ) )
17640ad2antlr 708 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  RR  /\  0  <_  x ) )
177 sqrsq 12065 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( sqr `  (
x ^ 2 ) )  =  x )
178176, 177syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( x ^ 2 ) )  =  x )
179178oveq1d 6088 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  ( x ^
2 ) )  / 
( sqr `  m
) )  =  ( x  /  ( sqr `  m ) ) )
180175, 179eqtrd 2467 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  m
) )  =  ( x  /  ( sqr `  m ) ) )
181180oveq2d 6089 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) )  =  ( 2  x.  ( x  /  ( sqr `  m
) ) ) )
1821a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  2  e.  CC )
1834adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  CC )
184 divass 9686 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  x  e.  CC  /\  (
( sqr `  m
)  e.  CC  /\  ( sqr `  m )  =/=  0 ) )  ->  ( ( 2  x.  x )  / 
( sqr `  m
) )  =  ( 2  x.  ( x  /  ( sqr `  m
) ) ) )
185182, 183, 163, 184syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  x )  /  ( sqr `  m
) )  =  ( 2  x.  ( x  /  ( sqr `  m
) ) ) )
186181, 185eqtr4d 2470 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) )  =  ( ( 2  x.  x
)  /  ( sqr `  m ) ) )
187186oveq2d 6089 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) )  =  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( 2  x.  x )  /  ( sqr `  m ) ) ) )
188162, 171, 1873eqtr4d 2477 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  x )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
2  x.  ( sqr `  ( ( x ^
2 )  /  m
) ) ) ) )
189188sumeq2dv 12487 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( 2  x.  x )  x.  (
( X `  ( L `  m )
)  /  m ) )  =  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
2  x.  ( sqr `  ( ( x ^
2 )  /  m
) ) ) ) )
190159, 160, 1893eqtr3d 2475 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  ( x  x. 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) ) )
191190oveq2d 6089 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  ( 2  x.  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) )  =  (
sum_ m  e.  (
1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  -  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) ) ) )
192133, 156, 1913eqtr4d 2477 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  ( 2  x.  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) ) )
193192mpteq2dva 4287 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) ) )  =  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  ( 2  x.  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) ) ) )
194 dchrisum0lem1.f . . . . 5  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
195 dchrisum0.c . . . . 5  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
196 dchrisum0.s . . . . 5  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  S )
197 dchrisum0.1 . . . . 5  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) ) )
198 dchrisum0lem2.u . . . . 5  |-  ( ph  ->  H  ~~> r  U )
1997, 9, 69, 6, 8, 70, 10, 13, 194, 195, 196, 197, 145, 198dchrisum0lem2a 21201 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) ) )  e.  O ( 1 ) )
200193, 199eqeltrrd 2510 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  ( 2  x.  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) ) )  e.  O ( 1 ) )
201117, 119, 200o1dif 12413 . 2  |-  ( ph  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  O ( 1 )  <->  ( x  e.  RR+  |->  ( 2  x.  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) )  e.  O
( 1 ) ) )
202102, 201mpbird 224 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   {crab 2701    \ cdif 3309    C_ wss 3312   {csn 3806   class class class wbr 4204    e. cmpt 4258   ` cfv 5446  (class class class)co 6073   CCcc 8978   RRcr 8979   0cc0 8980   1c1 8981    + caddc 8983    x. cmul 8985    +oocpnf 9107    < clt 9110    <_ cle 9111    - cmin 9281    / cdiv 9667   NNcn 9990   2c2 10039   ZZcz 10272   ZZ>=cuz 10478   RR+crp 10602   [,)cico 10908   ...cfz 11033   |_cfl 11191    seq cseq 11313   ^cexp 11372   sqrcsqr 12028   abscabs 12029    ~~> cli 12268    ~~> r crli 12269   O (
1 )co1 12270   sum_csu 12469   Basecbs 13459   0gc0g 13713   ZRHomczrh 16768  ℤ/nczn 16771  DChrcdchr 21006
This theorem is referenced by:  dchrisum0lem3  21203
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7586  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057  ax-pre-sup 9058  ax-addf 9059  ax-mulf 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-disj 4175  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-tpos 6471  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-omul 6721  df-er 6897  df-ec 6899  df-qs 6903  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7469  df-card 7816  df-acn 7819  df-cda 8038  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-div 9668  df-nn 9991  df-2 10048  df-3 10049  df-4 10050  df-5 10051  df-6 10052  df-7 10053  df-8 10054  df-9 10055  df-10 10056  df-n0 10212  df-z 10273  df-dec 10373  df-uz 10479  df-q 10565  df-rp 10603  df-xneg 10700  df-xadd 10701  df-xmul 10702  df-ioo 10910  df-ioc 10911  df-ico 10912  df-icc 10913  df-fz 11034  df-fzo 11126  df-fl 11192  df-mod 11241  df-seq 11314  df-exp 11373  df-fac 11557  df-bc 11584  df-hash 11609  df-shft 11872  df-cj 11894  df-re 11895  df-im 11896  df-sqr 12030  df-abs 12031  df-limsup 12255  df-clim 12272  df-rlim 12273  df-o1 12274  df-lo1 12275  df-sum 12470  df-ef 12660  df-sin 12662  df-cos 12663  df-pi 12665  df-dvds 12843  df-struct 13461  df-ndx 13462  df-slot 13463  df-base 13464  df-sets 13465  df-ress 13466  df-plusg 13532  df-mulr 13533  df-starv 13534  df-sca 13535  df-vsca 13536  df-tset 13538  df-ple 13539  df-ds 13541  df-unif 13542  df-hom 13543  df-cco 13544  df-rest 13640  df-topn 13641  df-topgen 13657  df-pt 13658  df-prds 13661  df-xrs 13716  df-0g 13717  df-gsum 13718  df-qtop 13723  df-imas 13724  df-divs 13725  df-xps 13726  df-mre 13801  df-mrc 13802  df-acs 13804  df-mnd 14680  df-mhm 14728  df-submnd 14729  df-grp 14802  df-minusg 14803  df-sbg 14804  df-mulg 14805  df-subg 14931  df-nsg 14932  df-eqg 14933  df-ghm 14994  df-cntz 15106  df-od 15157  df-cmn 15404  df-abl 15405  df-mgp 15639  df-rng 15653  df-cring 15654  df-ur 15655  df-oppr 15718  df-dvdsr 15736  df-unit 15737  df-invr 15767  df-dvr 15778  df-rnghom 15809  df-drng 15827  df-subrg 15856  df-lmod 15942  df-lss 15999  df-lsp 16038  df-sra 16234  df-rgmod 16235  df-lidl 16236  df-rsp 16237  df-2idl 16293  df-psmet 16684  df-xmet 16685  df-met 16686  df-bl 16687  df-mopn 16688  df-fbas 16689  df-fg 16690  df-cnfld 16694  df-zrh 16772  df-zn 16775  df-top 16953  df-bases 16955  df-topon 16956  df-topsp 16957  df-cld 17073  df-ntr 17074  df-cls 17075  df-nei 17152  df-lp 17190  df-perf 17191  df-cn 17281  df-cnp 17282  df-haus 17369  df-cmp 17440  df-tx 17584  df-hmeo 17777  df-fil 17868  df-fm 17960  df-flim 17961  df-flf 17962  df-xms 18340  df-ms 18341  df-tms 18342  df-cncf 18898  df-limc 19743  df-dv 19744  df-log 20444  df-cxp 20445  df-dchr 21007
  Copyright terms: Public domain W3C validator