MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem2 Unicode version

Theorem dchrisum0lem2 20683
Description: Lemma for dchrisum0 20685. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
dchrisum0lem1.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
dchrisum0.c  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
dchrisum0.s  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  S )
dchrisum0.1  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) ) )
dchrisum0lem2.h  |-  H  =  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )
dchrisum0lem2.u  |-  ( ph  ->  H  ~~> r  U )
dchrisum0lem2.k  |-  K  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
dchrisum0lem2.e  |-  ( ph  ->  E  e.  ( 0 [,)  +oo ) )
dchrisum0lem2.t  |-  ( ph  ->  seq  1 (  +  ,  K )  ~~>  T )
dchrisum0lem2.3  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  K ) `
 ( |_ `  y ) )  -  T ) )  <_ 
( E  /  y
) )
Assertion
Ref Expression
dchrisum0lem2  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O ( 1 ) )
Distinct variable groups:    x, m, y,  .1.    m, d, x, y, C    F, d, x, y   
a, d, m, x, y    E, d, m, x, y    m, K, y   
m, N, x, y    ph, d, m, x    T, d, m, x, y    S, d, m, x, y    U, m, x    x, W    m, Z, x, y    D, m, x, y    L, a, d, m, x, y    X, a, d, m, x, y    m, F
Allowed substitution hints:    ph( y, a)    C( a)    D( a, d)    S( a)    T( a)    U( y, a, d)    .1. ( a,
d)    E( a)    F( a)    G( x, y, m, a, d)    H( x, y, m, a, d)    K( x, a, d)    N( a, d)    W( y, m, a, d)    Z( a, d)

Proof of Theorem dchrisum0lem2
StepHypRef Expression
1 2cn 9832 . . . 4  |-  2  e.  CC
21a1i 10 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  2  e.  CC )
3 rpcn 10378 . . . . 5  |-  ( x  e.  RR+  ->  x  e.  CC )
43adantl 452 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  CC )
5 fzfid 11051 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
6 rpvmasum2.g . . . . . . 7  |-  G  =  (DChr `  N )
7 rpvmasum.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
8 rpvmasum2.d . . . . . . 7  |-  D  =  ( Base `  G
)
9 rpvmasum.l . . . . . . 7  |-  L  =  ( ZRHom `  Z
)
10 rpvmasum2.w . . . . . . . . . . 11  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
11 ssrab2 3271 . . . . . . . . . . 11  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
1210, 11eqsstri 3221 . . . . . . . . . 10  |-  W  C_  ( D  \  {  .1.  } )
13 dchrisum0.b . . . . . . . . . 10  |-  ( ph  ->  X  e.  W )
1412, 13sseldi 3191 . . . . . . . . 9  |-  ( ph  ->  X  e.  ( D 
\  {  .1.  }
) )
15 eldifi 3311 . . . . . . . . 9  |-  ( X  e.  ( D  \  {  .1.  } )  ->  X  e.  D )
1614, 15syl 15 . . . . . . . 8  |-  ( ph  ->  X  e.  D )
1716ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D )
18 elfzelz 10814 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  ZZ )
1918adantl 452 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  e.  ZZ )
206, 7, 8, 9, 17, 19dchrzrhcl 20500 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
21 elfznn 10835 . . . . . . . . 9  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  NN )
2221nnrpd 10405 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  RR+ )
2322adantl 452 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  e.  RR+ )
2423rpcnd 10408 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  e.  CC )
2523rpne0d 10411 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  =/=  0 )
2620, 24, 25divcld 9552 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  m ) )  /  m )  e.  CC )
275, 26fsumcl 12222 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  m )  e.  CC )
284, 27mulcld 8871 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  x.  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  m ) )  e.  CC )
29 rpssre 10380 . . . . 5  |-  RR+  C_  RR
30 o1const 12109 . . . . 5  |-  ( (
RR+  C_  RR  /\  2  e.  CC )  ->  (
x  e.  RR+  |->  2 )  e.  O ( 1 ) )
3129, 1, 30mp2an 653 . . . 4  |-  ( x  e.  RR+  |->  2 )  e.  O ( 1 )
3231a1i 10 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  2 )  e.  O
( 1 ) )
3329a1i 10 . . . 4  |-  ( ph  -> 
RR+  C_  RR )
34 1re 8853 . . . . 5  |-  1  e.  RR
3534a1i 10 . . . 4  |-  ( ph  ->  1  e.  RR )
36 dchrisum0lem2.e . . . . 5  |-  ( ph  ->  E  e.  ( 0 [,)  +oo ) )
37 elrege0 10762 . . . . . 6  |-  ( E  e.  ( 0 [,) 
+oo )  <->  ( E  e.  RR  /\  0  <_  E ) )
3837simplbi 446 . . . . 5  |-  ( E  e.  ( 0 [,) 
+oo )  ->  E  e.  RR )
3936, 38syl 15 . . . 4  |-  ( ph  ->  E  e.  RR )
404, 27absmuld 11952 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) )  =  ( ( abs `  x )  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) )
41 rprege0 10384 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
4241adantl 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
43 absid 11797 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( abs `  x
)  =  x )
4442, 43syl 15 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  x )  =  x )
4544oveq1d 5889 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( abs `  x )  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) )  =  ( x  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) )
4640, 45eqtrd 2328 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) )  =  ( x  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) )
4746adantrr 697 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
x  x.  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  m ) ) )  =  ( x  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  m ) ) ) )
4827adantrr 697 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m )  e.  CC )
4948subid1d 9162 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  m )  -  0 )  = 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m ) )
5021adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  e.  NN )
51 fveq2 5541 . . . . . . . . . . . . . . . 16  |-  ( a  =  m  ->  ( L `  a )  =  ( L `  m ) )
5251fveq2d 5545 . . . . . . . . . . . . . . 15  |-  ( a  =  m  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  m )
) )
53 id 19 . . . . . . . . . . . . . . 15  |-  ( a  =  m  ->  a  =  m )
5452, 53oveq12d 5892 . . . . . . . . . . . . . 14  |-  ( a  =  m  ->  (
( X `  ( L `  a )
)  /  a )  =  ( ( X `
 ( L `  m ) )  /  m ) )
55 dchrisum0lem2.k . . . . . . . . . . . . . 14  |-  K  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
56 ovex 5899 . . . . . . . . . . . . . 14  |-  ( ( X `  ( L `
 a ) )  /  a )  e. 
_V
5754, 55, 56fvmpt3i 5621 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  ( K `  m )  =  ( ( X `
 ( L `  m ) )  /  m ) )
5850, 57syl 15 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( K `  m )  =  ( ( X `  ( L `  m )
)  /  m ) )
5958adantlrr 701 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( K `  m )  =  ( ( X `  ( L `  m )
)  /  m ) )
60 rpregt0 10383 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
6160ad2antrl 708 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  e.  RR  /\  0  <  x ) )
6261simpld 445 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR )
63 simprr 733 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  <_  x )
64 flge1nn 10965 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
6562, 63, 64syl2anc 642 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  NN )
66 nnuz 10279 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
6765, 66syl6eleq 2386 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  ( ZZ>= ` 
1 ) )
6826adantlrr 701 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `
 ( L `  m ) )  /  m )  e.  CC )
6959, 67, 68fsumser 12219 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m )  =  (  seq  1
(  +  ,  K
) `  ( |_ `  x ) ) )
70 rpvmasum.a . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  NN )
71 rpvmasum2.1 . . . . . . . . . . . . . 14  |-  .1.  =  ( 0g `  G )
72 eldifsni 3763 . . . . . . . . . . . . . . 15  |-  ( X  e.  ( D  \  {  .1.  } )  ->  X  =/=  .1.  )
7314, 72syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  X  =/=  .1.  )
74 dchrisum0lem2.t . . . . . . . . . . . . . 14  |-  ( ph  ->  seq  1 (  +  ,  K )  ~~>  T )
75 dchrisum0lem2.3 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  K ) `
 ( |_ `  y ) )  -  T ) )  <_ 
( E  /  y
) )
767, 9, 70, 6, 8, 71, 16, 73, 55, 36, 74, 75, 10dchrvmaeq0 20669 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X  e.  W  <->  T  =  0 ) )
7713, 76mpbid 201 . . . . . . . . . . . 12  |-  ( ph  ->  T  =  0 )
7877adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  T  =  0 )
7978eqcomd 2301 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  =  T )
8069, 79oveq12d 5892 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  m )  -  0 )  =  ( (  seq  1
(  +  ,  K
) `  ( |_ `  x ) )  -  T ) )
8149, 80eqtr3d 2330 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m )  =  ( (  seq  1 (  +  ,  K ) `  ( |_ `  x ) )  -  T ) )
8281fveq2d 5545 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) )  =  ( abs `  (
(  seq  1 (  +  ,  K ) `
 ( |_ `  x ) )  -  T ) ) )
83 elicopnf 10755 . . . . . . . . . 10  |-  ( 1  e.  RR  ->  (
x  e.  ( 1 [,)  +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
8434, 83ax-mp 8 . . . . . . . . 9  |-  ( x  e.  ( 1 [,) 
+oo )  <->  ( x  e.  RR  /\  1  <_  x ) )
8562, 63, 84sylanbrc 645 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  ( 1 [,)  +oo ) )
8675adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  A. y  e.  (
1 [,)  +oo ) ( abs `  ( (  seq  1 (  +  ,  K ) `  ( |_ `  y ) )  -  T ) )  <_  ( E  /  y ) )
87 fveq2 5541 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  ( |_ `  y )  =  ( |_ `  x
) )
8887fveq2d 5545 . . . . . . . . . . . 12  |-  ( y  =  x  ->  (  seq  1 (  +  ,  K ) `  ( |_ `  y ) )  =  (  seq  1
(  +  ,  K
) `  ( |_ `  x ) ) )
8988oveq1d 5889 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
(  seq  1 (  +  ,  K ) `
 ( |_ `  y ) )  -  T )  =  ( (  seq  1 (  +  ,  K ) `
 ( |_ `  x ) )  -  T ) )
9089fveq2d 5545 . . . . . . . . . 10  |-  ( y  =  x  ->  ( abs `  ( (  seq  1 (  +  ,  K ) `  ( |_ `  y ) )  -  T ) )  =  ( abs `  (
(  seq  1 (  +  ,  K ) `
 ( |_ `  x ) )  -  T ) ) )
91 oveq2 5882 . . . . . . . . . 10  |-  ( y  =  x  ->  ( E  /  y )  =  ( E  /  x
) )
9290, 91breq12d 4052 . . . . . . . . 9  |-  ( y  =  x  ->  (
( abs `  (
(  seq  1 (  +  ,  K ) `
 ( |_ `  y ) )  -  T ) )  <_ 
( E  /  y
)  <->  ( abs `  (
(  seq  1 (  +  ,  K ) `
 ( |_ `  x ) )  -  T ) )  <_ 
( E  /  x
) ) )
9392rspcv 2893 . . . . . . . 8  |-  ( x  e.  ( 1 [,) 
+oo )  ->  ( A. y  e.  (
1 [,)  +oo ) ( abs `  ( (  seq  1 (  +  ,  K ) `  ( |_ `  y ) )  -  T ) )  <_  ( E  /  y )  -> 
( abs `  (
(  seq  1 (  +  ,  K ) `
 ( |_ `  x ) )  -  T ) )  <_ 
( E  /  x
) ) )
9485, 86, 93sylc 56 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
(  seq  1 (  +  ,  K ) `
 ( |_ `  x ) )  -  T ) )  <_ 
( E  /  x
) )
9582, 94eqbrtrd 4059 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) )  <_  ( E  /  x ) )
9648abscld 11934 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) )  e.  RR )
9739adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  E  e.  RR )
98 lemuldiv2 9652 . . . . . . 7  |-  ( ( ( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) )  e.  RR  /\  E  e.  RR  /\  ( x  e.  RR  /\  0  <  x ) )  -> 
( ( x  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) )  <_  E  <->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m ) )  <_  ( E  /  x ) ) )
9996, 97, 61, 98syl3anc 1182 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( x  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) )  <_  E  <->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m ) )  <_  ( E  /  x ) ) )
10095, 99mpbird 223 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  m ) ) )  <_  E
)
10147, 100eqbrtrd 4059 . . . 4  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
x  x.  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  m ) ) )  <_  E
)
10233, 28, 35, 39, 101elo1d 12026 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  m ) ) )  e.  O
( 1 ) )
1032, 28, 32, 102o1mul2 12114 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( 2  x.  (
x  x.  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  m ) ) ) )  e.  O ( 1 ) )
104 fzfid 11051 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) )  e. 
Fin )
10523rpsqrcld 11910 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  m )  e.  RR+ )
106105rpcnd 10408 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  m )  e.  CC )
107105rpne0d 10411 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  m )  =/=  0
)
10820, 106, 107divcld 9552 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
109108adantr 451 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
110 elfznn 10835 . . . . . . . . . 10  |-  ( d  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  m ) ) )  ->  d  e.  NN )
111110adantl 452 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  d  e.  NN )
112111nnrpd 10405 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  d  e.  RR+ )
113112rpsqrcld 11910 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  d )  e.  RR+ )
114113rpcnd 10408 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  d )  e.  CC )
115113rpne0d 10411 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  d )  =/=  0
)
116109, 114, 115divcld 9552 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) )  e.  CC )
117104, 116fsumcl 12222 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  CC )
1185, 117fsumcl 12222 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  CC )
119 mulcl 8837 . . . 4  |-  ( ( 2  e.  CC  /\  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  m ) )  e.  CC )  ->  ( 2  x.  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) )  e.  CC )
1201, 28, 119sylancr 644 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  ( x  x. 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m ) ) )  e.  CC )
121 2re 9831 . . . . . . . . . 10  |-  2  e.  RR
122 simpr 447 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
123 2z 10070 . . . . . . . . . . . . . 14  |-  2  e.  ZZ
124 rpexpcl 11138 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  2  e.  ZZ )  ->  (
x ^ 2 )  e.  RR+ )
125122, 123, 124sylancl 643 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR+ )
126 rpdivcl 10392 . . . . . . . . . . . . 13  |-  ( ( ( x ^ 2 )  e.  RR+  /\  m  e.  RR+ )  ->  (
( x ^ 2 )  /  m )  e.  RR+ )
127125, 22, 126syl2an 463 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  /  m )  e.  RR+ )
128127rpsqrcld 11910 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  m
) )  e.  RR+ )
129128rpred 10406 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  m
) )  e.  RR )
130 remulcl 8838 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  ( sqr `  ( ( x ^ 2 )  /  m ) )  e.  RR )  -> 
( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) )  e.  RR )
131121, 129, 130sylancr 644 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) )  e.  RR )
132131recnd 8877 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) )  e.  CC )
133108, 132mulcld 8871 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) )  e.  CC )
1345, 117, 133fsumsub 12266 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  (
2  x.  ( sqr `  ( ( x ^
2 )  /  m
) ) ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
2  x.  ( sqr `  ( ( x ^
2 )  /  m
) ) ) ) ) )
135113rpcnne0d 10415 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( sqr `  d )  e.  CC  /\  ( sqr `  d )  =/=  0
) )
136 reccl 9447 . . . . . . . . . . 11  |-  ( ( ( sqr `  d
)  e.  CC  /\  ( sqr `  d )  =/=  0 )  -> 
( 1  /  ( sqr `  d ) )  e.  CC )
137135, 136syl 15 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( 1  /  ( sqr `  d
) )  e.  CC )
138104, 137fsumcl 12222 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) )  e.  CC )
139108, 138, 132subdid 9251 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) ) ) )  =  ( ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x. 
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) ) )  -  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) ) ) )
140 fveq2 5541 . . . . . . . . . . . . . 14  |-  ( y  =  ( ( x ^ 2 )  /  m )  ->  ( |_ `  y )  =  ( |_ `  (
( x ^ 2 )  /  m ) ) )
141140oveq2d 5890 . . . . . . . . . . . . 13  |-  ( y  =  ( ( x ^ 2 )  /  m )  ->  (
1 ... ( |_ `  y ) )  =  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) )
142141sumeq1d 12190 . . . . . . . . . . . 12  |-  ( y  =  ( ( x ^ 2 )  /  m )  ->  sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  =  sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) ) )
143 fveq2 5541 . . . . . . . . . . . . 13  |-  ( y  =  ( ( x ^ 2 )  /  m )  ->  ( sqr `  y )  =  ( sqr `  (
( x ^ 2 )  /  m ) ) )
144143oveq2d 5890 . . . . . . . . . . . 12  |-  ( y  =  ( ( x ^ 2 )  /  m )  ->  (
2  x.  ( sqr `  y ) )  =  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) )
145142, 144oveq12d 5892 . . . . . . . . . . 11  |-  ( y  =  ( ( x ^ 2 )  /  m )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) ) )
146 dchrisum0lem2.h . . . . . . . . . . 11  |-  H  =  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )
147 ovex 5899 . . . . . . . . . . 11  |-  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) )  e.  _V
148145, 146, 147fvmpt3i 5621 . . . . . . . . . 10  |-  ( ( ( x ^ 2 )  /  m )  e.  RR+  ->  ( H `
 ( ( x ^ 2 )  /  m ) )  =  ( sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) ) ) )
149127, 148syl 15 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( H `  ( ( x ^
2 )  /  m
) )  =  (
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) ) ) )
150149oveq2d 5890 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) )  =  ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) ) ) ) )
151109, 114, 115divrecd 9555 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) )  =  ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( 1  /  ( sqr `  d ) ) ) )
152151sumeq2dv 12192 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  =  sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
1  /  ( sqr `  d ) ) ) )
153104, 108, 137fsummulc2 12262 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x. 
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) ) )  =  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
1  /  ( sqr `  d ) ) ) )
154152, 153eqtr4d 2331 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  =  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( 1  /  ( sqr `  d ) ) ) )
155154oveq1d 5889 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  -  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) ) )  =  ( ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( 1  /  ( sqr `  d ) ) )  -  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  (
2  x.  ( sqr `  ( ( x ^
2 )  /  m
) ) ) ) ) )
156139, 150, 1553eqtr4d 2338 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) )  =  (
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  (
2  x.  ( sqr `  ( ( x ^
2 )  /  m
) ) ) ) ) )
157156sumeq2dv 12192 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  (
2  x.  ( sqr `  ( ( x ^
2 )  /  m
) ) ) ) ) )
158 mulcl 8837 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  x  e.  CC )  ->  ( 2  x.  x
)  e.  CC )
1591, 4, 158sylancr 644 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  x )  e.  CC )
1605, 159, 26fsummulc2 12262 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  x )  x.  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  m ) )  =  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( 2  x.  x )  x.  (
( X `  ( L `  m )
)  /  m ) ) )
1612, 4, 27mulassd 8874 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  x )  x.  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  m ) )  =  ( 2  x.  ( x  x. 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m ) ) ) )
162159adantr 451 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  x )  e.  CC )
163162, 108, 106, 107div12d 9588 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  x )  x.  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  /  ( sqr `  m ) ) )  =  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( 2  x.  x )  /  ( sqr `  m ) ) ) )
164105rpcnne0d 10415 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  e.  CC  /\  ( sqr `  m )  =/=  0
) )
165 divdiv1 9487 . . . . . . . . . . . . 13  |-  ( ( ( X `  ( L `  m )
)  e.  CC  /\  ( ( sqr `  m
)  e.  CC  /\  ( sqr `  m )  =/=  0 )  /\  ( ( sqr `  m
)  e.  CC  /\  ( sqr `  m )  =/=  0 ) )  ->  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  /  ( sqr `  m ) )  =  ( ( X `
 ( L `  m ) )  / 
( ( sqr `  m
)  x.  ( sqr `  m ) ) ) )
16620, 164, 164, 165syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  m
) )  =  ( ( X `  ( L `  m )
)  /  ( ( sqr `  m )  x.  ( sqr `  m
) ) ) )
16723rprege0d 10413 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( m  e.  RR  /\  0  <_  m ) )
168 remsqsqr 11758 . . . . . . . . . . . . . 14  |-  ( ( m  e.  RR  /\  0  <_  m )  -> 
( ( sqr `  m
)  x.  ( sqr `  m ) )  =  m )
169167, 168syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  x.  ( sqr `  m
) )  =  m )
170169oveq2d 5890 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( ( sqr `  m
)  x.  ( sqr `  m ) ) )  =  ( ( X `
 ( L `  m ) )  /  m ) )
171166, 170eqtr2d 2329 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  m ) )  /  m )  =  ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  m
) ) )
172171oveq2d 5890 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  x )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( 2  x.  x )  x.  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  m
) ) ) )
173125adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x ^ 2 )  e.  RR+ )
174173rprege0d 10413 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  e.  RR  /\  0  <_  ( x ^ 2 ) ) )
175 sqrdiv 11767 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x ^
2 )  e.  RR  /\  0  <_  ( x ^ 2 ) )  /\  m  e.  RR+ )  ->  ( sqr `  (
( x ^ 2 )  /  m ) )  =  ( ( sqr `  ( x ^ 2 ) )  /  ( sqr `  m
) ) )
176174, 23, 175syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  m
) )  =  ( ( sqr `  (
x ^ 2 ) )  /  ( sqr `  m ) ) )
17741ad2antlr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  RR  /\  0  <_  x ) )
178 sqrsq 11771 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( sqr `  (
x ^ 2 ) )  =  x )
179177, 178syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( x ^ 2 ) )  =  x )
180179oveq1d 5889 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  ( x ^
2 ) )  / 
( sqr `  m
) )  =  ( x  /  ( sqr `  m ) ) )
181176, 180eqtrd 2328 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  m
) )  =  ( x  /  ( sqr `  m ) ) )
182181oveq2d 5890 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) )  =  ( 2  x.  ( x  /  ( sqr `  m
) ) ) )
1831a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  2  e.  CC )
1844adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  CC )
185 divass 9458 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  x  e.  CC  /\  (
( sqr `  m
)  e.  CC  /\  ( sqr `  m )  =/=  0 ) )  ->  ( ( 2  x.  x )  / 
( sqr `  m
) )  =  ( 2  x.  ( x  /  ( sqr `  m
) ) ) )
186183, 184, 164, 185syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  x )  /  ( sqr `  m
) )  =  ( 2  x.  ( x  /  ( sqr `  m
) ) ) )
187182, 186eqtr4d 2331 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) )  =  ( ( 2  x.  x
)  /  ( sqr `  m ) ) )
188187oveq2d 5890 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) )  =  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( 2  x.  x )  /  ( sqr `  m ) ) ) )
189163, 172, 1883eqtr4d 2338 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  x )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
2  x.  ( sqr `  ( ( x ^
2 )  /  m
) ) ) ) )
190189sumeq2dv 12192 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( 2  x.  x )  x.  (
( X `  ( L `  m )
)  /  m ) )  =  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
2  x.  ( sqr `  ( ( x ^
2 )  /  m
) ) ) ) )
191160, 161, 1903eqtr3d 2336 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  ( x  x. 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) ) )
192191oveq2d 5890 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  ( 2  x.  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) )  =  (
sum_ m  e.  (
1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  -  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) ) ) )
193134, 157, 1923eqtr4d 2338 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  ( 2  x.  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) ) )
194193mpteq2dva 4122 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) ) )  =  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  ( 2  x.  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) ) ) )
195 dchrisum0lem1.f . . . . 5  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
196 dchrisum0.c . . . . 5  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
197 dchrisum0.s . . . . 5  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  S )
198 dchrisum0.1 . . . . 5  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) ) )
199 dchrisum0lem2.u . . . . 5  |-  ( ph  ->  H  ~~> r  U )
2007, 9, 70, 6, 8, 71, 10, 13, 195, 196, 197, 198, 146, 199dchrisum0lem2a 20682 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) ) )  e.  O ( 1 ) )
201194, 200eqeltrrd 2371 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  ( 2  x.  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) ) )  e.  O ( 1 ) )
202118, 120, 201o1dif 12119 . 2  |-  ( ph  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  O ( 1 )  <->  ( x  e.  RR+  |->  ( 2  x.  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) )  e.  O
( 1 ) ) )
203103, 202mpbird 223 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   {crab 2560    \ cdif 3162    C_ wss 3165   {csn 3653   class class class wbr 4039    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    +oocpnf 8880    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   NNcn 9762   2c2 9811   ZZcz 10040   ZZ>=cuz 10246   RR+crp 10370   [,)cico 10674   ...cfz 10798   |_cfl 10940    seq cseq 11062   ^cexp 11120   sqrcsqr 11734   abscabs 11735    ~~> cli 11974    ~~> r crli 11975   O (
1 )co1 11976   sum_csu 12174   Basecbs 13164   0gc0g 13416   ZRHomczrh 16467  ℤ/nczn 16470  DChrcdchr 20487
This theorem is referenced by:  dchrisum0lem3  20684
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-tpos 6250  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-er 6676  df-ec 6678  df-qs 6682  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-o1 11980  df-lo1 11981  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368  df-pi 12370  df-dvds 12548  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-divs 13428  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-mhm 14431  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-mulg 14508  df-subg 14634  df-nsg 14635  df-eqg 14636  df-ghm 14697  df-cntz 14809  df-od 14860  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-cring 15357  df-ur 15358  df-oppr 15421  df-dvdsr 15439  df-unit 15440  df-invr 15470  df-dvr 15481  df-rnghom 15512  df-drng 15530  df-subrg 15559  df-lmod 15645  df-lss 15706  df-lsp 15745  df-sra 15941  df-rgmod 15942  df-lidl 15943  df-rsp 15944  df-2idl 16000  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-zrh 16471  df-zn 16474  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-cmp 17130  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-log 19930  df-cxp 19931  df-dchr 20488
  Copyright terms: Public domain W3C validator