MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem2a Structured version   Unicode version

Theorem dchrisum0lem2a 21203
Description: Lemma for dchrisum0 21206. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
dchrisum0lem1.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
dchrisum0.c  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
dchrisum0.s  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  S )
dchrisum0.1  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) ) )
dchrisum0lem2.h  |-  H  =  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )
dchrisum0lem2.u  |-  ( ph  ->  H  ~~> r  U )
Assertion
Ref Expression
dchrisum0lem2a  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) ) )  e.  O ( 1 ) )
Distinct variable groups:    x, m, y,  .1.    m, d, x, y, C    F, d, x, y   
a, d, m, x, y    m, N, x, y    ph, d, m, x    S, d, m, x, y    U, m, x    x, W   
m, Z, x, y    D, m, x, y    L, a, d, m, x, y    X, a, d, m, x, y    m, F
Allowed substitution hints:    ph( y, a)    C( a)    D( a, d)    S( a)    U( y, a, d)    .1. ( a, d)    F( a)    G( x, y, m, a, d)    H( x, y, m, a, d)    N( a, d)    W( y, m, a, d)    Z( a, d)

Proof of Theorem dchrisum0lem2a
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 11304 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
2 simpl 444 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ph )
3 elfznn 11072 . . . . 5  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  NN )
4 rpvmasum2.g . . . . . . 7  |-  G  =  (DChr `  N )
5 rpvmasum.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
6 rpvmasum2.d . . . . . . 7  |-  D  =  ( Base `  G
)
7 rpvmasum.l . . . . . . 7  |-  L  =  ( ZRHom `  Z
)
8 rpvmasum2.w . . . . . . . . . . 11  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
9 ssrab2 3420 . . . . . . . . . . 11  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
108, 9eqsstri 3370 . . . . . . . . . 10  |-  W  C_  ( D  \  {  .1.  } )
11 dchrisum0.b . . . . . . . . . 10  |-  ( ph  ->  X  e.  W )
1210, 11sseldi 3338 . . . . . . . . 9  |-  ( ph  ->  X  e.  ( D 
\  {  .1.  }
) )
1312eldifad 3324 . . . . . . . 8  |-  ( ph  ->  X  e.  D )
1413adantr 452 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  X  e.  D )
15 nnz 10295 . . . . . . . 8  |-  ( m  e.  NN  ->  m  e.  ZZ )
1615adantl 453 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  ZZ )
174, 5, 6, 7, 14, 16dchrzrhcl 21021 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( X `
 ( L `  m ) )  e.  CC )
18 nnrp 10613 . . . . . . . . 9  |-  ( m  e.  NN  ->  m  e.  RR+ )
1918adantl 453 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  RR+ )
2019rpsqrcld 12206 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  e.  RR+ )
2120rpcnd 10642 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  e.  CC )
2220rpne0d 10645 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  =/=  0
)
2317, 21, 22divcld 9782 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  e.  CC )
242, 3, 23syl2an 464 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
251, 24fsumcl 12519 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  e.  CC )
26 dchrisum0lem2.u . . . . 5  |-  ( ph  ->  H  ~~> r  U )
27 rlimcl 12289 . . . . 5  |-  ( H  ~~> r  U  ->  U  e.  CC )
2826, 27syl 16 . . . 4  |-  ( ph  ->  U  e.  CC )
2928adantr 452 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  U  e.  CC )
30 0xr 9123 . . . . . . . . 9  |-  0  e.  RR*
31 0lt1 9542 . . . . . . . . 9  |-  0  <  1
32 df-ioo 10912 . . . . . . . . . 10  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
33 df-ico 10914 . . . . . . . . . 10  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
34 xrltletr 10739 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  1  e.  RR*  /\  w  e. 
RR* )  ->  (
( 0  <  1  /\  1  <_  w )  ->  0  <  w
) )
3532, 33, 34ixxss1 10926 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  0  <  1 )  ->  (
1 [,)  +oo )  C_  ( 0 (,)  +oo ) )
3630, 31, 35mp2an 654 . . . . . . . 8  |-  ( 1 [,)  +oo )  C_  (
0 (,)  +oo )
37 ioorp 10980 . . . . . . . 8  |-  ( 0 (,)  +oo )  =  RR+
3836, 37sseqtri 3372 . . . . . . 7  |-  ( 1 [,)  +oo )  C_  RR+
39 resmpt 5183 . . . . . . 7  |-  ( ( 1 [,)  +oo )  C_  RR+  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  |`  ( 1 [,)  +oo ) )  =  ( x  e.  ( 1 [,)  +oo )  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) ) )
4038, 39ax-mp 8 . . . . . 6  |-  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  |`  ( 1 [,)  +oo ) )  =  ( x  e.  ( 1 [,)  +oo )  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
4138sseli 3336 . . . . . . . . 9  |-  ( x  e.  ( 1 [,) 
+oo )  ->  x  e.  RR+ )
423adantl 453 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  e.  NN )
43 fveq2 5720 . . . . . . . . . . . . 13  |-  ( a  =  m  ->  ( L `  a )  =  ( L `  m ) )
4443fveq2d 5724 . . . . . . . . . . . 12  |-  ( a  =  m  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  m )
) )
45 fveq2 5720 . . . . . . . . . . . 12  |-  ( a  =  m  ->  ( sqr `  a )  =  ( sqr `  m
) )
4644, 45oveq12d 6091 . . . . . . . . . . 11  |-  ( a  =  m  ->  (
( X `  ( L `  a )
)  /  ( sqr `  a ) )  =  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
47 dchrisum0lem1.f . . . . . . . . . . 11  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
48 ovex 6098 . . . . . . . . . . 11  |-  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) )  e.  _V
4946, 47, 48fvmpt3i 5801 . . . . . . . . . 10  |-  ( m  e.  NN  ->  ( F `  m )  =  ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) ) )
5042, 49syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( F `  m )  =  ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )
5141, 50sylanl2 633 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 [,)  +oo ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( F `  m )  =  ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )
52 1re 9082 . . . . . . . . . . . 12  |-  1  e.  RR
53 elicopnf 10992 . . . . . . . . . . . 12  |-  ( 1  e.  RR  ->  (
x  e.  ( 1 [,)  +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
5452, 53ax-mp 8 . . . . . . . . . . 11  |-  ( x  e.  ( 1 [,) 
+oo )  <->  ( x  e.  RR  /\  1  <_  x ) )
55 flge1nn 11218 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
5654, 55sylbi 188 . . . . . . . . . 10  |-  ( x  e.  ( 1 [,) 
+oo )  ->  ( |_ `  x )  e.  NN )
5756adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 [,)  +oo ) )  ->  ( |_ `  x )  e.  NN )
58 nnuz 10513 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
5957, 58syl6eleq 2525 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 [,)  +oo ) )  ->  ( |_ `  x )  e.  ( ZZ>= `  1 )
)
6041, 24sylanl2 633 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 [,)  +oo ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
6151, 59, 60fsumser 12516 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 [,)  +oo ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  =  (  seq  1 (  +  ,  F ) `
 ( |_ `  x ) ) )
6261mpteq2dva 4287 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 1 [,)  +oo )  |-> 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )  =  ( x  e.  ( 1 [,)  +oo )  |->  (  seq  1
(  +  ,  F
) `  ( |_ `  x ) ) ) )
6340, 62syl5eq 2479 . . . . 5  |-  ( ph  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  |`  ( 1 [,)  +oo ) )  =  ( x  e.  ( 1 [,)  +oo )  |->  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) )
64 fveq2 5720 . . . . . . 7  |-  ( m  =  ( |_ `  x )  ->  (  seq  1 (  +  ,  F ) `  m
)  =  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) )
65 rpssre 10614 . . . . . . . . 9  |-  RR+  C_  RR
6665a1i 11 . . . . . . . 8  |-  ( ph  -> 
RR+  C_  RR )
6738, 66syl5ss 3351 . . . . . . 7  |-  ( ph  ->  ( 1 [,)  +oo )  C_  RR )
68 1z 10303 . . . . . . . 8  |-  1  e.  ZZ
6968a1i 11 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
7046cbvmptv 4292 . . . . . . . . . . . . 13  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) ) )  =  ( m  e.  NN  |->  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
7147, 70eqtri 2455 . . . . . . . . . . . 12  |-  F  =  ( m  e.  NN  |->  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
7223, 71fmptd 5885 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> CC )
7372ffvelrnda 5862 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m )  e.  CC )
7458, 69, 73serf 11343 . . . . . . . . 9  |-  ( ph  ->  seq  1 (  +  ,  F ) : NN --> CC )
7574feqmptd 5771 . . . . . . . 8  |-  ( ph  ->  seq  1 (  +  ,  F )  =  ( m  e.  NN  |->  (  seq  1 (  +  ,  F ) `  m ) ) )
76 dchrisum0.s . . . . . . . 8  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  S )
7775, 76eqbrtrrd 4226 . . . . . . 7  |-  ( ph  ->  ( m  e.  NN  |->  (  seq  1 (  +  ,  F ) `  m ) )  ~~>  S )
7874ffvelrnda 5862 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  (  seq  1 (  +  ,  F ) `  m
)  e.  CC )
7954simprbi 451 . . . . . . . 8  |-  ( x  e.  ( 1 [,) 
+oo )  ->  1  <_  x )
8079adantl 453 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 [,)  +oo ) )  ->  1  <_  x )
8158, 64, 67, 69, 77, 78, 80climrlim2 12333 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 1 [,)  +oo )  |->  (  seq  1 (  +  ,  F ) `
 ( |_ `  x ) ) )  ~~> r  S )
82 rlimo1 12402 . . . . . 6  |-  ( ( x  e.  ( 1 [,)  +oo )  |->  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) )  ~~> r  S  -> 
( x  e.  ( 1 [,)  +oo )  |->  (  seq  1 (  +  ,  F ) `
 ( |_ `  x ) ) )  e.  O ( 1 ) )
8381, 82syl 16 . . . . 5  |-  ( ph  ->  ( x  e.  ( 1 [,)  +oo )  |->  (  seq  1 (  +  ,  F ) `
 ( |_ `  x ) ) )  e.  O ( 1 ) )
8463, 83eqeltrd 2509 . . . 4  |-  ( ph  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  |`  ( 1 [,)  +oo ) )  e.  O
( 1 ) )
85 eqid 2435 . . . . . 6  |-  ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
8625, 85fmptd 5885 . . . . 5  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) ) : RR+ --> CC )
8752a1i 11 . . . . 5  |-  ( ph  ->  1  e.  RR )
8886, 66, 87o1resb 12352 . . . 4  |-  ( ph  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  e.  O ( 1 )  <->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  |`  ( 1 [,)  +oo ) )  e.  O
( 1 ) ) )
8984, 88mpbird 224 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )  e.  O ( 1 ) )
90 o1const 12405 . . . 4  |-  ( (
RR+  C_  RR  /\  U  e.  CC )  ->  (
x  e.  RR+  |->  U )  e.  O ( 1 ) )
9165, 28, 90sylancr 645 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  U )  e.  O
( 1 ) )
9225, 29, 89, 91o1mul2 12410 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  U ) )  e.  O ( 1 ) )
93 simpr 448 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
94 2z 10304 . . . . . . . . 9  |-  2  e.  ZZ
95 rpexpcl 11392 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  2  e.  ZZ )  ->  (
x ^ 2 )  e.  RR+ )
9693, 94, 95sylancl 644 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR+ )
973nnrpd 10639 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  RR+ )
98 rpdivcl 10626 . . . . . . . 8  |-  ( ( ( x ^ 2 )  e.  RR+  /\  m  e.  RR+ )  ->  (
( x ^ 2 )  /  m )  e.  RR+ )
9996, 97, 98syl2an 464 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  /  m )  e.  RR+ )
100 dchrisum0lem2.h . . . . . . . . 9  |-  H  =  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )
101100divsqrsumf 20811 . . . . . . . 8  |-  H : RR+
--> RR
102101ffvelrni 5861 . . . . . . 7  |-  ( ( ( x ^ 2 )  /  m )  e.  RR+  ->  ( H `
 ( ( x ^ 2 )  /  m ) )  e.  RR )
10399, 102syl 16 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( H `  ( ( x ^
2 )  /  m
) )  e.  RR )
104103recnd 9106 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( H `  ( ( x ^
2 )  /  m
) )  e.  CC )
10524, 104mulcld 9100 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) )  e.  CC )
1061, 105fsumcl 12519 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  e.  CC )
10725, 29mulcld 9100 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  U
)  e.  CC )
10826ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  H  ~~> r  U
)
109108, 27syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  U  e.  CC )
11024, 109mulcld 9100 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U )  e.  CC )
1111, 105, 110fsumsub 12563 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  U
) ) )
11224, 104, 109subdid 9481 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) )  =  ( ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U ) ) )
113112sumeq2dv 12489 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) )  =  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U ) ) )
1141, 29, 24fsummulc1 12560 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  U
)  =  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  U
) )
115114oveq2d 6089 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  U
) ) )
116111, 113, 1153eqtr4d 2477 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U ) ) )
117116mpteq2dva 4287 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  =  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  U
) ) ) )
118104, 109subcld 9403 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( H `  ( (
x ^ 2 )  /  m ) )  -  U )  e.  CC )
11924, 118mulcld 9100 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) )  e.  CC )
1201, 119fsumcl 12519 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) )  e.  CC )
121120abscld 12230 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  e.  RR )
122119abscld 12230 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) ) )  e.  RR )
1231, 122fsumrecl 12520 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  e.  RR )
12452a1i 11 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  1  e.  RR )
1251, 119fsumabs 12572 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) ) )
126 rprege0 10618 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
127126adantl 453 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
128127simpld 446 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
129 reflcl 11197 . . . . . . . . . 10  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
130128, 129syl 16 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  e.  RR )
131130, 93rerpdivcld 10667 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  /  x )  e.  RR )
132 simplr 732 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
133132rprecred 10651 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  x )  e.  RR )
13424abscld 12230 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  e.  RR )
13597rpsqrcld 12206 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  ( sqr `  m )  e.  RR+ )
136135adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  m )  e.  RR+ )
137136rprecred 10651 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( sqr `  m
) )  e.  RR )
138118abscld 12230 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) )  e.  RR )
139136, 132rpdivcld 10657 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  /  x )  e.  RR+ )
14065, 139sseldi 3338 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  /  x )  e.  RR )
14124absge0d 12238 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) ) ) )
142118absge0d 12238 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( H `  ( ( x ^ 2 )  /  m ) )  -  U ) ) )
1432, 3, 17syl2an 464 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
144136rpcnd 10642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  m )  e.  CC )
145136rpne0d 10645 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  m )  =/=  0
)
146143, 144, 145absdivd 12249 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  ( ( abs `  ( X `  ( L `  m )
) )  /  ( abs `  ( sqr `  m
) ) ) )
147136rprege0d 10647 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  e.  RR  /\  0  <_ 
( sqr `  m
) ) )
148 absid 12093 . . . . . . . . . . . . . . . 16  |-  ( ( ( sqr `  m
)  e.  RR  /\  0  <_  ( sqr `  m
) )  ->  ( abs `  ( sqr `  m
) )  =  ( sqr `  m ) )
149147, 148syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sqr `  m
) )  =  ( sqr `  m ) )
150149oveq2d 6089 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( X `  ( L `  m ) ) )  /  ( abs `  ( sqr `  m
) ) )  =  ( ( abs `  ( X `  ( L `  m ) ) )  /  ( sqr `  m
) ) )
151146, 150eqtrd 2467 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  ( ( abs `  ( X `  ( L `  m )
) )  /  ( sqr `  m ) ) )
152143abscld 12230 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( X `  ( L `  m )
) )  e.  RR )
15352a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
154 eqid 2435 . . . . . . . . . . . . . . 15  |-  ( Base `  Z )  =  (
Base `  Z )
15513ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D )
156 rpvmasum.a . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  NN )
157156nnnn0d 10266 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  NN0 )
1585, 154, 7znzrhfo 16820 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Z
) )
159 fof 5645 . . . . . . . . . . . . . . . . . 18  |-  ( L : ZZ -onto-> ( Base `  Z )  ->  L : ZZ --> ( Base `  Z
) )
160157, 158, 1593syl 19 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  L : ZZ --> ( Base `  Z ) )
161160adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  RR+ )  ->  L : ZZ
--> ( Base `  Z
) )
162 elfzelz 11051 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  ZZ )
163 ffvelrn 5860 . . . . . . . . . . . . . . . 16  |-  ( ( L : ZZ --> ( Base `  Z )  /\  m  e.  ZZ )  ->  ( L `  m )  e.  ( Base `  Z
) )
164161, 162, 163syl2an 464 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( L `  m )  e.  (
Base `  Z )
)
1654, 6, 5, 154, 155, 164dchrabs2 21038 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( X `  ( L `  m )
) )  <_  1
)
166152, 153, 136, 165lediv1dd 10694 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( X `  ( L `  m ) ) )  /  ( sqr `  m ) )  <_  ( 1  / 
( sqr `  m
) ) )
167151, 166eqbrtrd 4224 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  <_  ( 1  / 
( sqr `  m
) ) )
168100, 108divsqrsum2 20813 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( ( x ^ 2 )  /  m )  e.  RR+ )  ->  ( abs `  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) )  <_  ( 1  /  ( sqr `  (
( x ^ 2 )  /  m ) ) ) )
16999, 168mpdan 650 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) )  <_  (
1  /  ( sqr `  ( ( x ^
2 )  /  m
) ) ) )
17096rprege0d 10647 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
x ^ 2 )  e.  RR  /\  0  <_  ( x ^ 2 ) ) )
171 sqrdiv 12063 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x ^
2 )  e.  RR  /\  0  <_  ( x ^ 2 ) )  /\  m  e.  RR+ )  ->  ( sqr `  (
( x ^ 2 )  /  m ) )  =  ( ( sqr `  ( x ^ 2 ) )  /  ( sqr `  m
) ) )
172170, 97, 171syl2an 464 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  m
) )  =  ( ( sqr `  (
x ^ 2 ) )  /  ( sqr `  m ) ) )
173126ad2antlr 708 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  RR  /\  0  <_  x ) )
174 sqrsq 12067 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( sqr `  (
x ^ 2 ) )  =  x )
175173, 174syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( x ^ 2 ) )  =  x )
176175oveq1d 6088 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  ( x ^
2 ) )  / 
( sqr `  m
) )  =  ( x  /  ( sqr `  m ) ) )
177172, 176eqtrd 2467 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  m
) )  =  ( x  /  ( sqr `  m ) ) )
178177oveq2d 6089 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( sqr `  (
( x ^ 2 )  /  m ) ) )  =  ( 1  /  ( x  /  ( sqr `  m
) ) ) )
179 rpcnne0 10621 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
180179ad2antlr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
181136rpcnne0d 10649 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  e.  CC  /\  ( sqr `  m )  =/=  0
) )
182 recdiv 9712 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  x  =/=  0 )  /\  ( ( sqr `  m )  e.  CC  /\  ( sqr `  m
)  =/=  0 ) )  ->  ( 1  /  ( x  / 
( sqr `  m
) ) )  =  ( ( sqr `  m
)  /  x ) )
183180, 181, 182syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( x  / 
( sqr `  m
) ) )  =  ( ( sqr `  m
)  /  x ) )
184178, 183eqtrd 2467 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( sqr `  (
( x ^ 2 )  /  m ) ) )  =  ( ( sqr `  m
)  /  x ) )
185169, 184breqtrd 4228 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) )  <_  (
( sqr `  m
)  /  x ) )
186134, 137, 138, 140, 141, 142, 167, 185lemul12ad 9945 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) ) )  x.  ( abs `  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) ) )  <_  (
( 1  /  ( sqr `  m ) )  x.  ( ( sqr `  m )  /  x
) ) )
18724, 118absmuld 12248 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) ) )  =  ( ( abs `  (
( X `  ( L `  m )
)  /  ( sqr `  m ) ) )  x.  ( abs `  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) ) ) )
188 ax-1cn 9040 . . . . . . . . . . . . . 14  |-  1  e.  CC
189188a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  CC )
190 dmdcan 9716 . . . . . . . . . . . . 13  |-  ( ( ( ( sqr `  m
)  e.  CC  /\  ( sqr `  m )  =/=  0 )  /\  ( x  e.  CC  /\  x  =/=  0 )  /\  1  e.  CC )  ->  ( ( ( sqr `  m )  /  x )  x.  ( 1  /  ( sqr `  m ) ) )  =  ( 1  /  x ) )
191181, 180, 189, 190syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( sqr `  m
)  /  x )  x.  ( 1  / 
( sqr `  m
) ) )  =  ( 1  /  x
) )
192139rpcnd 10642 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  /  x )  e.  CC )
193 reccl 9677 . . . . . . . . . . . . . 14  |-  ( ( ( sqr `  m
)  e.  CC  /\  ( sqr `  m )  =/=  0 )  -> 
( 1  /  ( sqr `  m ) )  e.  CC )
194181, 193syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( sqr `  m
) )  e.  CC )
195192, 194mulcomd 9101 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( sqr `  m
)  /  x )  x.  ( 1  / 
( sqr `  m
) ) )  =  ( ( 1  / 
( sqr `  m
) )  x.  (
( sqr `  m
)  /  x ) ) )
196191, 195eqtr3d 2469 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  x )  =  ( ( 1  / 
( sqr `  m
) )  x.  (
( sqr `  m
)  /  x ) ) )
197186, 187, 1963brtr4d 4234 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) ) )  <_  (
1  /  x ) )
1981, 122, 133, 197fsumle 12570 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x ) )
199 flge0nn0 11217 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
200 hashfz1 11622 . . . . . . . . . . . 12  |-  ( ( |_ `  x )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
201127, 199, 2003syl 19 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( # `  (
1 ... ( |_ `  x ) ) )  =  ( |_ `  x ) )
202201oveq1d 6088 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( # `
 ( 1 ... ( |_ `  x
) ) )  x.  ( 1  /  x
) )  =  ( ( |_ `  x
)  x.  ( 1  /  x ) ) )
20393rpreccld 10650 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  /  x )  e.  RR+ )
204203rpcnd 10642 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  /  x )  e.  CC )
205 fsumconst 12565 . . . . . . . . . . 11  |-  ( ( ( 1 ... ( |_ `  x ) )  e.  Fin  /\  (
1  /  x )  e.  CC )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x )  =  ( ( # `  ( 1 ... ( |_ `  x ) ) )  x.  ( 1  /  x ) ) )
2061, 204, 205syl2anc 643 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x
)  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  ( 1  /  x
) ) )
207130recnd 9106 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  e.  CC )
208179adantl 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
209208simpld 446 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  CC )
210208simprd 450 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  =/=  0 )
211207, 209, 210divrecd 9785 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  /  x )  =  ( ( |_ `  x
)  x.  ( 1  /  x ) ) )
212202, 206, 2113eqtr4d 2477 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x
)  =  ( ( |_ `  x )  /  x ) )
213198, 212breqtrd 4228 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_ 
( ( |_ `  x )  /  x
) )
214 flle 11200 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  ( |_ `  x )  <_  x )
215128, 214syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  <_  x
)
216128recnd 9106 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  CC )
217216mulid1d 9097 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  x.  1 )  =  x )
218215, 217breqtrrd 4230 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  <_  (
x  x.  1 ) )
219 rpregt0 10617 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
220219adantl 453 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  < 
x ) )
221 ledivmul 9875 . . . . . . . . . 10  |-  ( ( ( |_ `  x
)  e.  RR  /\  1  e.  RR  /\  (
x  e.  RR  /\  0  <  x ) )  ->  ( ( ( |_ `  x )  /  x )  <_ 
1  <->  ( |_ `  x )  <_  (
x  x.  1 ) ) )
222130, 124, 220, 221syl3anc 1184 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( |_ `  x
)  /  x )  <_  1  <->  ( |_ `  x )  <_  (
x  x.  1 ) ) )
223218, 222mpbird 224 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  /  x )  <_  1
)
224123, 131, 124, 213, 223letrd 9219 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_ 
1 )
225121, 123, 124, 125, 224letrd 9219 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_ 
1 )
226225adantrr 698 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_ 
1 )
22766, 120, 87, 87, 226elo1d 12322 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  e.  O ( 1 ) )
228117, 227eqeltrrd 2510 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  U
) ) )  e.  O ( 1 ) )
229106, 107, 228o1dif 12415 . 2  |-  ( ph  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) ) )  e.  O
( 1 )  <->  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  U ) )  e.  O ( 1 ) ) )
23092, 229mpbird 224 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) ) )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   {crab 2701    \ cdif 3309    C_ wss 3312   {csn 3806   class class class wbr 4204    e. cmpt 4258    |` cres 4872   -->wf 5442   -onto->wfo 5444   ` cfv 5446  (class class class)co 6073   Fincfn 7101   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    +oocpnf 9109   RR*cxr 9111    < clt 9112    <_ cle 9113    - cmin 9283    / cdiv 9669   NNcn 9992   2c2 10041   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480   RR+crp 10604   (,)cioo 10908   [,)cico 10910   ...cfz 11035   |_cfl 11193    seq cseq 11315   ^cexp 11374   #chash 11610   sqrcsqr 12030   abscabs 12031    ~~> cli 12270    ~~> r crli 12271   O (
1 )co1 12272   sum_csu 12471   Basecbs 13461   0gc0g 13715   ZRHomczrh 16770  ℤ/nczn 16773  DChrcdchr 21008
This theorem is referenced by:  dchrisum0lem2  21204
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-disj 4175  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-tpos 6471  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-omul 6721  df-er 6897  df-ec 6899  df-qs 6903  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-acn 7821  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-ioc 10913  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-fac 11559  df-bc 11586  df-hash 11611  df-shft 11874  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-limsup 12257  df-clim 12274  df-rlim 12275  df-o1 12276  df-lo1 12277  df-sum 12472  df-ef 12662  df-sin 12664  df-cos 12665  df-pi 12667  df-dvds 12845  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-hom 13545  df-cco 13546  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-prds 13663  df-xrs 13718  df-0g 13719  df-gsum 13720  df-qtop 13725  df-imas 13726  df-divs 13727  df-xps 13728  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-mhm 14730  df-submnd 14731  df-grp 14804  df-minusg 14805  df-sbg 14806  df-mulg 14807  df-subg 14933  df-nsg 14934  df-eqg 14935  df-ghm 14996  df-cntz 15108  df-od 15159  df-cmn 15406  df-abl 15407  df-mgp 15641  df-rng 15655  df-cring 15656  df-ur 15657  df-oppr 15720  df-dvdsr 15738  df-unit 15739  df-invr 15769  df-dvr 15780  df-rnghom 15811  df-drng 15829  df-subrg 15858  df-lmod 15944  df-lss 16001  df-lsp 16040  df-sra 16236  df-rgmod 16237  df-lidl 16238  df-rsp 16239  df-2idl 16295  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-fbas 16691  df-fg 16692  df-cnfld 16696  df-zrh 16774  df-zn 16777  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-lp 17192  df-perf 17193  df-cn 17283  df-cnp 17284  df-haus 17371  df-cmp 17442  df-tx 17586  df-hmeo 17779  df-fil 17870  df-fm 17962  df-flim 17963  df-flf 17964  df-xms 18342  df-ms 18343  df-tms 18344  df-cncf 18900  df-limc 19745  df-dv 19746  df-log 20446  df-cxp 20447  df-dchr 21009
  Copyright terms: Public domain W3C validator