MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem2a Unicode version

Theorem dchrisum0lem2a 21078
Description: Lemma for dchrisum0 21081. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
dchrisum0lem1.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
dchrisum0.c  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
dchrisum0.s  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  S )
dchrisum0.1  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) ) )
dchrisum0lem2.h  |-  H  =  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )
dchrisum0lem2.u  |-  ( ph  ->  H  ~~> r  U )
Assertion
Ref Expression
dchrisum0lem2a  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) ) )  e.  O ( 1 ) )
Distinct variable groups:    x, m, y,  .1.    m, d, x, y, C    F, d, x, y   
a, d, m, x, y    m, N, x, y    ph, d, m, x    S, d, m, x, y    U, m, x    x, W   
m, Z, x, y    D, m, x, y    L, a, d, m, x, y    X, a, d, m, x, y    m, F
Allowed substitution hints:    ph( y, a)    C( a)    D( a, d)    S( a)    U( y, a, d)    .1. ( a, d)    F( a)    G( x, y, m, a, d)    H( x, y, m, a, d)    N( a, d)    W( y, m, a, d)    Z( a, d)

Proof of Theorem dchrisum0lem2a
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 11239 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
2 simpl 444 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ph )
3 elfznn 11012 . . . . 5  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  NN )
4 rpvmasum2.g . . . . . . 7  |-  G  =  (DChr `  N )
5 rpvmasum.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
6 rpvmasum2.d . . . . . . 7  |-  D  =  ( Base `  G
)
7 rpvmasum.l . . . . . . 7  |-  L  =  ( ZRHom `  Z
)
8 rpvmasum2.w . . . . . . . . . . 11  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
9 ssrab2 3371 . . . . . . . . . . 11  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
108, 9eqsstri 3321 . . . . . . . . . 10  |-  W  C_  ( D  \  {  .1.  } )
11 dchrisum0.b . . . . . . . . . 10  |-  ( ph  ->  X  e.  W )
1210, 11sseldi 3289 . . . . . . . . 9  |-  ( ph  ->  X  e.  ( D 
\  {  .1.  }
) )
1312eldifad 3275 . . . . . . . 8  |-  ( ph  ->  X  e.  D )
1413adantr 452 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  X  e.  D )
15 nnz 10235 . . . . . . . 8  |-  ( m  e.  NN  ->  m  e.  ZZ )
1615adantl 453 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  ZZ )
174, 5, 6, 7, 14, 16dchrzrhcl 20896 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( X `
 ( L `  m ) )  e.  CC )
18 nnrp 10553 . . . . . . . . 9  |-  ( m  e.  NN  ->  m  e.  RR+ )
1918adantl 453 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  RR+ )
2019rpsqrcld 12141 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  e.  RR+ )
2120rpcnd 10582 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  e.  CC )
2220rpne0d 10585 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  =/=  0
)
2317, 21, 22divcld 9722 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  e.  CC )
242, 3, 23syl2an 464 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
251, 24fsumcl 12454 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  e.  CC )
26 dchrisum0lem2.u . . . . 5  |-  ( ph  ->  H  ~~> r  U )
27 rlimcl 12224 . . . . 5  |-  ( H  ~~> r  U  ->  U  e.  CC )
2826, 27syl 16 . . . 4  |-  ( ph  ->  U  e.  CC )
2928adantr 452 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  U  e.  CC )
30 0xr 9064 . . . . . . . . 9  |-  0  e.  RR*
31 0lt1 9482 . . . . . . . . 9  |-  0  <  1
32 df-ioo 10852 . . . . . . . . . 10  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
33 df-ico 10854 . . . . . . . . . 10  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
34 xrltletr 10679 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  1  e.  RR*  /\  w  e. 
RR* )  ->  (
( 0  <  1  /\  1  <_  w )  ->  0  <  w
) )
3532, 33, 34ixxss1 10866 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  0  <  1 )  ->  (
1 [,)  +oo )  C_  ( 0 (,)  +oo ) )
3630, 31, 35mp2an 654 . . . . . . . 8  |-  ( 1 [,)  +oo )  C_  (
0 (,)  +oo )
37 ioorp 10920 . . . . . . . 8  |-  ( 0 (,)  +oo )  =  RR+
3836, 37sseqtri 3323 . . . . . . 7  |-  ( 1 [,)  +oo )  C_  RR+
39 resmpt 5131 . . . . . . 7  |-  ( ( 1 [,)  +oo )  C_  RR+  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  |`  ( 1 [,)  +oo ) )  =  ( x  e.  ( 1 [,)  +oo )  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) ) )
4038, 39ax-mp 8 . . . . . 6  |-  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  |`  ( 1 [,)  +oo ) )  =  ( x  e.  ( 1 [,)  +oo )  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
4138sseli 3287 . . . . . . . . 9  |-  ( x  e.  ( 1 [,) 
+oo )  ->  x  e.  RR+ )
423adantl 453 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  e.  NN )
43 fveq2 5668 . . . . . . . . . . . . 13  |-  ( a  =  m  ->  ( L `  a )  =  ( L `  m ) )
4443fveq2d 5672 . . . . . . . . . . . 12  |-  ( a  =  m  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  m )
) )
45 fveq2 5668 . . . . . . . . . . . 12  |-  ( a  =  m  ->  ( sqr `  a )  =  ( sqr `  m
) )
4644, 45oveq12d 6038 . . . . . . . . . . 11  |-  ( a  =  m  ->  (
( X `  ( L `  a )
)  /  ( sqr `  a ) )  =  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
47 dchrisum0lem1.f . . . . . . . . . . 11  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
48 ovex 6045 . . . . . . . . . . 11  |-  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) )  e.  _V
4946, 47, 48fvmpt3i 5748 . . . . . . . . . 10  |-  ( m  e.  NN  ->  ( F `  m )  =  ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) ) )
5042, 49syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( F `  m )  =  ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )
5141, 50sylanl2 633 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 [,)  +oo ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( F `  m )  =  ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )
52 1re 9023 . . . . . . . . . . . 12  |-  1  e.  RR
53 elicopnf 10932 . . . . . . . . . . . 12  |-  ( 1  e.  RR  ->  (
x  e.  ( 1 [,)  +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
5452, 53ax-mp 8 . . . . . . . . . . 11  |-  ( x  e.  ( 1 [,) 
+oo )  <->  ( x  e.  RR  /\  1  <_  x ) )
55 flge1nn 11153 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
5654, 55sylbi 188 . . . . . . . . . 10  |-  ( x  e.  ( 1 [,) 
+oo )  ->  ( |_ `  x )  e.  NN )
5756adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 [,)  +oo ) )  ->  ( |_ `  x )  e.  NN )
58 nnuz 10453 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
5957, 58syl6eleq 2477 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 [,)  +oo ) )  ->  ( |_ `  x )  e.  ( ZZ>= `  1 )
)
6041, 24sylanl2 633 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 [,)  +oo ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
6151, 59, 60fsumser 12451 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 [,)  +oo ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  =  (  seq  1 (  +  ,  F ) `
 ( |_ `  x ) ) )
6261mpteq2dva 4236 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 1 [,)  +oo )  |-> 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )  =  ( x  e.  ( 1 [,)  +oo )  |->  (  seq  1
(  +  ,  F
) `  ( |_ `  x ) ) ) )
6340, 62syl5eq 2431 . . . . 5  |-  ( ph  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  |`  ( 1 [,)  +oo ) )  =  ( x  e.  ( 1 [,)  +oo )  |->  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) )
64 fveq2 5668 . . . . . . 7  |-  ( m  =  ( |_ `  x )  ->  (  seq  1 (  +  ,  F ) `  m
)  =  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) )
65 rpssre 10554 . . . . . . . . 9  |-  RR+  C_  RR
6665a1i 11 . . . . . . . 8  |-  ( ph  -> 
RR+  C_  RR )
6738, 66syl5ss 3302 . . . . . . 7  |-  ( ph  ->  ( 1 [,)  +oo )  C_  RR )
68 1z 10243 . . . . . . . 8  |-  1  e.  ZZ
6968a1i 11 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
7046cbvmptv 4241 . . . . . . . . . . . . 13  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) ) )  =  ( m  e.  NN  |->  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
7147, 70eqtri 2407 . . . . . . . . . . . 12  |-  F  =  ( m  e.  NN  |->  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
7223, 71fmptd 5832 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> CC )
7372ffvelrnda 5809 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m )  e.  CC )
7458, 69, 73serf 11278 . . . . . . . . 9  |-  ( ph  ->  seq  1 (  +  ,  F ) : NN --> CC )
7574feqmptd 5718 . . . . . . . 8  |-  ( ph  ->  seq  1 (  +  ,  F )  =  ( m  e.  NN  |->  (  seq  1 (  +  ,  F ) `  m ) ) )
76 dchrisum0.s . . . . . . . 8  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  S )
7775, 76eqbrtrrd 4175 . . . . . . 7  |-  ( ph  ->  ( m  e.  NN  |->  (  seq  1 (  +  ,  F ) `  m ) )  ~~>  S )
7874ffvelrnda 5809 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  (  seq  1 (  +  ,  F ) `  m
)  e.  CC )
7954simprbi 451 . . . . . . . 8  |-  ( x  e.  ( 1 [,) 
+oo )  ->  1  <_  x )
8079adantl 453 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 [,)  +oo ) )  ->  1  <_  x )
8158, 64, 67, 69, 77, 78, 80climrlim2 12268 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 1 [,)  +oo )  |->  (  seq  1 (  +  ,  F ) `
 ( |_ `  x ) ) )  ~~> r  S )
82 rlimo1 12337 . . . . . 6  |-  ( ( x  e.  ( 1 [,)  +oo )  |->  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) )  ~~> r  S  -> 
( x  e.  ( 1 [,)  +oo )  |->  (  seq  1 (  +  ,  F ) `
 ( |_ `  x ) ) )  e.  O ( 1 ) )
8381, 82syl 16 . . . . 5  |-  ( ph  ->  ( x  e.  ( 1 [,)  +oo )  |->  (  seq  1 (  +  ,  F ) `
 ( |_ `  x ) ) )  e.  O ( 1 ) )
8463, 83eqeltrd 2461 . . . 4  |-  ( ph  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  |`  ( 1 [,)  +oo ) )  e.  O
( 1 ) )
85 eqid 2387 . . . . . 6  |-  ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
8625, 85fmptd 5832 . . . . 5  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) ) : RR+ --> CC )
8752a1i 11 . . . . 5  |-  ( ph  ->  1  e.  RR )
8886, 66, 87o1resb 12287 . . . 4  |-  ( ph  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  e.  O ( 1 )  <->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  |`  ( 1 [,)  +oo ) )  e.  O
( 1 ) ) )
8984, 88mpbird 224 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )  e.  O ( 1 ) )
90 o1const 12340 . . . 4  |-  ( (
RR+  C_  RR  /\  U  e.  CC )  ->  (
x  e.  RR+  |->  U )  e.  O ( 1 ) )
9165, 28, 90sylancr 645 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  U )  e.  O
( 1 ) )
9225, 29, 89, 91o1mul2 12345 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  U ) )  e.  O ( 1 ) )
93 simpr 448 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
94 2z 10244 . . . . . . . . 9  |-  2  e.  ZZ
95 rpexpcl 11327 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  2  e.  ZZ )  ->  (
x ^ 2 )  e.  RR+ )
9693, 94, 95sylancl 644 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR+ )
973nnrpd 10579 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  RR+ )
98 rpdivcl 10566 . . . . . . . 8  |-  ( ( ( x ^ 2 )  e.  RR+  /\  m  e.  RR+ )  ->  (
( x ^ 2 )  /  m )  e.  RR+ )
9996, 97, 98syl2an 464 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  /  m )  e.  RR+ )
100 dchrisum0lem2.h . . . . . . . . 9  |-  H  =  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )
101100divsqrsumf 20686 . . . . . . . 8  |-  H : RR+
--> RR
102101ffvelrni 5808 . . . . . . 7  |-  ( ( ( x ^ 2 )  /  m )  e.  RR+  ->  ( H `
 ( ( x ^ 2 )  /  m ) )  e.  RR )
10399, 102syl 16 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( H `  ( ( x ^
2 )  /  m
) )  e.  RR )
104103recnd 9047 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( H `  ( ( x ^
2 )  /  m
) )  e.  CC )
10524, 104mulcld 9041 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) )  e.  CC )
1061, 105fsumcl 12454 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  e.  CC )
10725, 29mulcld 9041 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  U
)  e.  CC )
10826ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  H  ~~> r  U
)
109108, 27syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  U  e.  CC )
11024, 109mulcld 9041 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U )  e.  CC )
1111, 105, 110fsumsub 12498 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  U
) ) )
11224, 104, 109subdid 9421 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) )  =  ( ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U ) ) )
113112sumeq2dv 12424 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) )  =  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U ) ) )
1141, 29, 24fsummulc1 12495 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  U
)  =  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  U
) )
115114oveq2d 6036 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  U
) ) )
116111, 113, 1153eqtr4d 2429 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U ) ) )
117116mpteq2dva 4236 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  =  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  U
) ) ) )
118104, 109subcld 9343 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( H `  ( (
x ^ 2 )  /  m ) )  -  U )  e.  CC )
11924, 118mulcld 9041 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) )  e.  CC )
1201, 119fsumcl 12454 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) )  e.  CC )
121120abscld 12165 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  e.  RR )
122119abscld 12165 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) ) )  e.  RR )
1231, 122fsumrecl 12455 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  e.  RR )
12452a1i 11 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  1  e.  RR )
1251, 119fsumabs 12507 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) ) )
126 rprege0 10558 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
127126adantl 453 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
128127simpld 446 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
129 reflcl 11132 . . . . . . . . . 10  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
130128, 129syl 16 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  e.  RR )
131130, 93rerpdivcld 10607 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  /  x )  e.  RR )
132 simplr 732 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
133132rprecred 10591 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  x )  e.  RR )
13424abscld 12165 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  e.  RR )
13597rpsqrcld 12141 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  ( sqr `  m )  e.  RR+ )
136135adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  m )  e.  RR+ )
137136rprecred 10591 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( sqr `  m
) )  e.  RR )
138118abscld 12165 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) )  e.  RR )
139136, 132rpdivcld 10597 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  /  x )  e.  RR+ )
14065, 139sseldi 3289 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  /  x )  e.  RR )
14124absge0d 12173 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) ) ) )
142118absge0d 12173 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( H `  ( ( x ^ 2 )  /  m ) )  -  U ) ) )
1432, 3, 17syl2an 464 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
144136rpcnd 10582 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  m )  e.  CC )
145136rpne0d 10585 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  m )  =/=  0
)
146143, 144, 145absdivd 12184 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  ( ( abs `  ( X `  ( L `  m )
) )  /  ( abs `  ( sqr `  m
) ) ) )
147136rprege0d 10587 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  e.  RR  /\  0  <_ 
( sqr `  m
) ) )
148 absid 12028 . . . . . . . . . . . . . . . 16  |-  ( ( ( sqr `  m
)  e.  RR  /\  0  <_  ( sqr `  m
) )  ->  ( abs `  ( sqr `  m
) )  =  ( sqr `  m ) )
149147, 148syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sqr `  m
) )  =  ( sqr `  m ) )
150149oveq2d 6036 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( X `  ( L `  m ) ) )  /  ( abs `  ( sqr `  m
) ) )  =  ( ( abs `  ( X `  ( L `  m ) ) )  /  ( sqr `  m
) ) )
151146, 150eqtrd 2419 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  ( ( abs `  ( X `  ( L `  m )
) )  /  ( sqr `  m ) ) )
152143abscld 12165 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( X `  ( L `  m )
) )  e.  RR )
15352a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
154 eqid 2387 . . . . . . . . . . . . . . 15  |-  ( Base `  Z )  =  (
Base `  Z )
15513ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D )
156 rpvmasum.a . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  NN )
157156nnnn0d 10206 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  NN0 )
1585, 154, 7znzrhfo 16751 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Z
) )
159 fof 5593 . . . . . . . . . . . . . . . . . 18  |-  ( L : ZZ -onto-> ( Base `  Z )  ->  L : ZZ --> ( Base `  Z
) )
160157, 158, 1593syl 19 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  L : ZZ --> ( Base `  Z ) )
161160adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  RR+ )  ->  L : ZZ
--> ( Base `  Z
) )
162 elfzelz 10991 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  ZZ )
163 ffvelrn 5807 . . . . . . . . . . . . . . . 16  |-  ( ( L : ZZ --> ( Base `  Z )  /\  m  e.  ZZ )  ->  ( L `  m )  e.  ( Base `  Z
) )
164161, 162, 163syl2an 464 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( L `  m )  e.  (
Base `  Z )
)
1654, 6, 5, 154, 155, 164dchrabs2 20913 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( X `  ( L `  m )
) )  <_  1
)
166152, 153, 136, 165lediv1dd 10634 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( X `  ( L `  m ) ) )  /  ( sqr `  m ) )  <_  ( 1  / 
( sqr `  m
) ) )
167151, 166eqbrtrd 4173 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  <_  ( 1  / 
( sqr `  m
) ) )
168100, 108divsqrsum2 20688 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( ( x ^ 2 )  /  m )  e.  RR+ )  ->  ( abs `  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) )  <_  ( 1  /  ( sqr `  (
( x ^ 2 )  /  m ) ) ) )
16999, 168mpdan 650 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) )  <_  (
1  /  ( sqr `  ( ( x ^
2 )  /  m
) ) ) )
17096rprege0d 10587 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
x ^ 2 )  e.  RR  /\  0  <_  ( x ^ 2 ) ) )
171 sqrdiv 11998 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x ^
2 )  e.  RR  /\  0  <_  ( x ^ 2 ) )  /\  m  e.  RR+ )  ->  ( sqr `  (
( x ^ 2 )  /  m ) )  =  ( ( sqr `  ( x ^ 2 ) )  /  ( sqr `  m
) ) )
172170, 97, 171syl2an 464 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  m
) )  =  ( ( sqr `  (
x ^ 2 ) )  /  ( sqr `  m ) ) )
173126ad2antlr 708 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  RR  /\  0  <_  x ) )
174 sqrsq 12002 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( sqr `  (
x ^ 2 ) )  =  x )
175173, 174syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( x ^ 2 ) )  =  x )
176175oveq1d 6035 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  ( x ^
2 ) )  / 
( sqr `  m
) )  =  ( x  /  ( sqr `  m ) ) )
177172, 176eqtrd 2419 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  m
) )  =  ( x  /  ( sqr `  m ) ) )
178177oveq2d 6036 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( sqr `  (
( x ^ 2 )  /  m ) ) )  =  ( 1  /  ( x  /  ( sqr `  m
) ) ) )
179 rpcnne0 10561 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
180179ad2antlr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
181136rpcnne0d 10589 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  e.  CC  /\  ( sqr `  m )  =/=  0
) )
182 recdiv 9652 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  x  =/=  0 )  /\  ( ( sqr `  m )  e.  CC  /\  ( sqr `  m
)  =/=  0 ) )  ->  ( 1  /  ( x  / 
( sqr `  m
) ) )  =  ( ( sqr `  m
)  /  x ) )
183180, 181, 182syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( x  / 
( sqr `  m
) ) )  =  ( ( sqr `  m
)  /  x ) )
184178, 183eqtrd 2419 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( sqr `  (
( x ^ 2 )  /  m ) ) )  =  ( ( sqr `  m
)  /  x ) )
185169, 184breqtrd 4177 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) )  <_  (
( sqr `  m
)  /  x ) )
186134, 137, 138, 140, 141, 142, 167, 185lemul12ad 9885 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) ) )  x.  ( abs `  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) ) )  <_  (
( 1  /  ( sqr `  m ) )  x.  ( ( sqr `  m )  /  x
) ) )
18724, 118absmuld 12183 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) ) )  =  ( ( abs `  (
( X `  ( L `  m )
)  /  ( sqr `  m ) ) )  x.  ( abs `  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) ) ) )
188 ax-1cn 8981 . . . . . . . . . . . . . 14  |-  1  e.  CC
189188a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  CC )
190 dmdcan 9656 . . . . . . . . . . . . 13  |-  ( ( ( ( sqr `  m
)  e.  CC  /\  ( sqr `  m )  =/=  0 )  /\  ( x  e.  CC  /\  x  =/=  0 )  /\  1  e.  CC )  ->  ( ( ( sqr `  m )  /  x )  x.  ( 1  /  ( sqr `  m ) ) )  =  ( 1  /  x ) )
191181, 180, 189, 190syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( sqr `  m
)  /  x )  x.  ( 1  / 
( sqr `  m
) ) )  =  ( 1  /  x
) )
192139rpcnd 10582 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  /  x )  e.  CC )
193 reccl 9617 . . . . . . . . . . . . . 14  |-  ( ( ( sqr `  m
)  e.  CC  /\  ( sqr `  m )  =/=  0 )  -> 
( 1  /  ( sqr `  m ) )  e.  CC )
194181, 193syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( sqr `  m
) )  e.  CC )
195192, 194mulcomd 9042 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( sqr `  m
)  /  x )  x.  ( 1  / 
( sqr `  m
) ) )  =  ( ( 1  / 
( sqr `  m
) )  x.  (
( sqr `  m
)  /  x ) ) )
196191, 195eqtr3d 2421 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  x )  =  ( ( 1  / 
( sqr `  m
) )  x.  (
( sqr `  m
)  /  x ) ) )
197186, 187, 1963brtr4d 4183 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) ) )  <_  (
1  /  x ) )
1981, 122, 133, 197fsumle 12505 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x ) )
199 flge0nn0 11152 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
200 hashfz1 11557 . . . . . . . . . . . 12  |-  ( ( |_ `  x )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
201127, 199, 2003syl 19 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( # `  (
1 ... ( |_ `  x ) ) )  =  ( |_ `  x ) )
202201oveq1d 6035 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( # `
 ( 1 ... ( |_ `  x
) ) )  x.  ( 1  /  x
) )  =  ( ( |_ `  x
)  x.  ( 1  /  x ) ) )
20393rpreccld 10590 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  /  x )  e.  RR+ )
204203rpcnd 10582 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  /  x )  e.  CC )
205 fsumconst 12500 . . . . . . . . . . 11  |-  ( ( ( 1 ... ( |_ `  x ) )  e.  Fin  /\  (
1  /  x )  e.  CC )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x )  =  ( ( # `  ( 1 ... ( |_ `  x ) ) )  x.  ( 1  /  x ) ) )
2061, 204, 205syl2anc 643 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x
)  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  ( 1  /  x
) ) )
207130recnd 9047 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  e.  CC )
208179adantl 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
209208simpld 446 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  CC )
210208simprd 450 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  =/=  0 )
211207, 209, 210divrecd 9725 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  /  x )  =  ( ( |_ `  x
)  x.  ( 1  /  x ) ) )
212202, 206, 2113eqtr4d 2429 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x
)  =  ( ( |_ `  x )  /  x ) )
213198, 212breqtrd 4177 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_ 
( ( |_ `  x )  /  x
) )
214 flle 11135 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  ( |_ `  x )  <_  x )
215128, 214syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  <_  x
)
216128recnd 9047 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  CC )
217216mulid1d 9038 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  x.  1 )  =  x )
218215, 217breqtrrd 4179 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  <_  (
x  x.  1 ) )
219 rpregt0 10557 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
220219adantl 453 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  < 
x ) )
221 ledivmul 9815 . . . . . . . . . 10  |-  ( ( ( |_ `  x
)  e.  RR  /\  1  e.  RR  /\  (
x  e.  RR  /\  0  <  x ) )  ->  ( ( ( |_ `  x )  /  x )  <_ 
1  <->  ( |_ `  x )  <_  (
x  x.  1 ) ) )
222130, 124, 220, 221syl3anc 1184 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( |_ `  x
)  /  x )  <_  1  <->  ( |_ `  x )  <_  (
x  x.  1 ) ) )
223218, 222mpbird 224 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  /  x )  <_  1
)
224123, 131, 124, 213, 223letrd 9159 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_ 
1 )
225121, 123, 124, 125, 224letrd 9159 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_ 
1 )
226225adantrr 698 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_ 
1 )
22766, 120, 87, 87, 226elo1d 12257 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  e.  O ( 1 ) )
228117, 227eqeltrrd 2462 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  U
) ) )  e.  O ( 1 ) )
229106, 107, 228o1dif 12350 . 2  |-  ( ph  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) ) )  e.  O
( 1 )  <->  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  U ) )  e.  O ( 1 ) ) )
23092, 229mpbird 224 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) ) )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2550   A.wral 2649   {crab 2653    \ cdif 3260    C_ wss 3263   {csn 3757   class class class wbr 4153    e. cmpt 4207    |` cres 4820   -->wf 5390   -onto->wfo 5392   ` cfv 5394  (class class class)co 6020   Fincfn 7045   CCcc 8921   RRcr 8922   0cc0 8923   1c1 8924    + caddc 8926    x. cmul 8928    +oocpnf 9050   RR*cxr 9052    < clt 9053    <_ cle 9054    - cmin 9223    / cdiv 9609   NNcn 9932   2c2 9981   NN0cn0 10153   ZZcz 10214   ZZ>=cuz 10420   RR+crp 10544   (,)cioo 10848   [,)cico 10850   ...cfz 10975   |_cfl 11128    seq cseq 11250   ^cexp 11309   #chash 11545   sqrcsqr 11965   abscabs 11966    ~~> cli 12205    ~~> r crli 12206   O (
1 )co1 12207   sum_csu 12406   Basecbs 13396   0gc0g 13650   ZRHomczrh 16701  ℤ/nczn 16704  DChrcdchr 20883
This theorem is referenced by:  dchrisum0lem2  21079
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-addf 9002  ax-mulf 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-disj 4124  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-tpos 6415  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-omul 6665  df-er 6841  df-ec 6843  df-qs 6847  df-map 6956  df-pm 6957  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-fi 7351  df-sup 7381  df-oi 7412  df-card 7759  df-acn 7762  df-cda 7981  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-q 10507  df-rp 10545  df-xneg 10642  df-xadd 10643  df-xmul 10644  df-ioo 10852  df-ioc 10853  df-ico 10854  df-icc 10855  df-fz 10976  df-fzo 11066  df-fl 11129  df-mod 11178  df-seq 11251  df-exp 11310  df-fac 11494  df-bc 11521  df-hash 11546  df-shft 11809  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-limsup 12192  df-clim 12209  df-rlim 12210  df-o1 12211  df-lo1 12212  df-sum 12407  df-ef 12597  df-sin 12599  df-cos 12600  df-pi 12602  df-dvds 12780  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-starv 13471  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-unif 13479  df-hom 13480  df-cco 13481  df-rest 13577  df-topn 13578  df-topgen 13594  df-pt 13595  df-prds 13598  df-xrs 13653  df-0g 13654  df-gsum 13655  df-qtop 13660  df-imas 13661  df-divs 13662  df-xps 13663  df-mre 13738  df-mrc 13739  df-acs 13741  df-mnd 14617  df-mhm 14665  df-submnd 14666  df-grp 14739  df-minusg 14740  df-sbg 14741  df-mulg 14742  df-subg 14868  df-nsg 14869  df-eqg 14870  df-ghm 14931  df-cntz 15043  df-od 15094  df-cmn 15341  df-abl 15342  df-mgp 15576  df-rng 15590  df-cring 15591  df-ur 15592  df-oppr 15655  df-dvdsr 15673  df-unit 15674  df-invr 15704  df-dvr 15715  df-rnghom 15746  df-drng 15764  df-subrg 15793  df-lmod 15879  df-lss 15936  df-lsp 15975  df-sra 16171  df-rgmod 16172  df-lidl 16173  df-rsp 16174  df-2idl 16230  df-xmet 16619  df-met 16620  df-bl 16621  df-mopn 16622  df-fbas 16623  df-fg 16624  df-cnfld 16627  df-zrh 16705  df-zn 16708  df-top 16886  df-bases 16888  df-topon 16889  df-topsp 16890  df-cld 17006  df-ntr 17007  df-cls 17008  df-nei 17085  df-lp 17123  df-perf 17124  df-cn 17213  df-cnp 17214  df-haus 17301  df-cmp 17372  df-tx 17515  df-hmeo 17708  df-fil 17799  df-fm 17891  df-flim 17892  df-flf 17893  df-xms 18259  df-ms 18260  df-tms 18261  df-cncf 18779  df-limc 19620  df-dv 19621  df-log 20321  df-cxp 20322  df-dchr 20884
  Copyright terms: Public domain W3C validator