MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem3 Unicode version

Theorem dchrisum0lem3 20891
Description: Lemma for dchrisum0 20892. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
dchrisum0lem1.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
dchrisum0.c  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
dchrisum0.s  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  S )
dchrisum0.1  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) ) )
Assertion
Ref Expression
dchrisum0lem3  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O ( 1 ) )
Distinct variable groups:    x, m, y,  .1.    m, d, x, y, C    F, d, x, y   
a, d, m, x, y    m, N, x, y    ph, d, m, x    S, d, m, x, y   
x, W    m, Z, x, y    D, m, x, y    L, a, d, m, x, y    X, a, d, m, x, y   
m, F
Allowed substitution hints:    ph( y, a)    C( a)    D( a, d)    S( a)    .1. ( a, d)    F( a)    G( x, y, m, a, d)    N( a, d)    W( y, m, a, d)    Z( a, d)

Proof of Theorem dchrisum0lem3
Dummy variables  c 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1re 8984 . . 3  |-  1  e.  RR
21a1i 10 . 2  |-  ( ph  ->  1  e.  RR )
3 sumex 12368 . . . 4  |-  sum_ m  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  _V
43a1i 10 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  _V )
5 sumex 12368 . . . 4  |-  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  _V
65a1i 10 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  _V )
7 rpvmasum.z . . . . 5  |-  Z  =  (ℤ/n `  N )
8 rpvmasum.l . . . . 5  |-  L  =  ( ZRHom `  Z
)
9 rpvmasum.a . . . . 5  |-  ( ph  ->  N  e.  NN )
10 rpvmasum2.g . . . . 5  |-  G  =  (DChr `  N )
11 rpvmasum2.d . . . . 5  |-  D  =  ( Base `  G
)
12 rpvmasum2.1 . . . . 5  |-  .1.  =  ( 0g `  G )
13 rpvmasum2.w . . . . . . . 8  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
14 ssrab2 3344 . . . . . . . 8  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
1513, 14eqsstri 3294 . . . . . . 7  |-  W  C_  ( D  \  {  .1.  } )
16 difss 3390 . . . . . . 7  |-  ( D 
\  {  .1.  }
)  C_  D
1715, 16sstri 3274 . . . . . 6  |-  W  C_  D
18 dchrisum0.b . . . . . 6  |-  ( ph  ->  X  e.  W )
1917, 18sseldi 3264 . . . . 5  |-  ( ph  ->  X  e.  D )
2015, 18sseldi 3264 . . . . . 6  |-  ( ph  ->  X  e.  ( D 
\  {  .1.  }
) )
21 eldifsni 3843 . . . . . 6  |-  ( X  e.  ( D  \  {  .1.  } )  ->  X  =/=  .1.  )
2220, 21syl 15 . . . . 5  |-  ( ph  ->  X  =/=  .1.  )
23 eqid 2366 . . . . 5  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) )  =  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) )
247, 8, 9, 10, 11, 12, 19, 22, 23dchrmusumlema 20865 . . . 4  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) )
259adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  N  e.  NN )
2618adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  X  e.  W )
27 dchrisum0lem1.f . . . . . . . 8  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
28 dchrisum0.c . . . . . . . . 9  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
2928adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  C  e.  ( 0 [,)  +oo ) )
30 dchrisum0.s . . . . . . . . 9  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  S )
3130adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  seq  1
(  +  ,  F
)  ~~>  S )
32 dchrisum0.1 . . . . . . . . 9  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) ) )
3332adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  A. y  e.  ( 1 [,)  +oo ) ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) ) )
34 eqid 2366 . . . . . . . 8  |-  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) )  =  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) )
3534divsqrsum 20498 . . . . . . . . . 10  |-  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) )  e.  dom  ~~> r
3634divsqrsumf 20497 . . . . . . . . . . . . 13  |-  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) ) : RR+ --> RR
37 ax-resscn 8941 . . . . . . . . . . . . 13  |-  RR  C_  CC
38 fss 5503 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) ) : RR+ --> RR  /\  RR  C_  CC )  ->  (
y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) ) : RR+ --> CC )
3936, 37, 38mp2an 653 . . . . . . . . . . . 12  |-  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) ) : RR+ --> CC
4039a1i 10 . . . . . . . . . . 11  |-  ( ph  ->  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) ) : RR+ --> CC )
41 rpsup 11134 . . . . . . . . . . . 12  |-  sup ( RR+ ,  RR* ,  <  )  =  +oo
4241a1i 10 . . . . . . . . . . 11  |-  ( ph  ->  sup ( RR+ ,  RR* ,  <  )  =  +oo )
4340, 42rlimdm 12232 . . . . . . . . . 10  |-  ( ph  ->  ( ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )  e.  dom  ~~> r  <->  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )  ~~> r  (  ~~> r  `  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) ) ) ) )
4435, 43mpbii 202 . . . . . . . . 9  |-  ( ph  ->  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )  ~~> r  (  ~~> r  `  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) ) ) )
4544adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )  ~~> r  (  ~~> r  `  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) ) ) )
46 simprl 732 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  c  e.  ( 0 [,)  +oo ) )
47 simprrl 740 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t )
48 simprrr 741 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  A. y  e.  ( 1 [,)  +oo ) ( abs `  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
y ) )
497, 8, 25, 10, 11, 12, 13, 26, 27, 29, 31, 33, 34, 45, 23, 46, 47, 48dchrisum0lem2 20890 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  O ( 1 ) )
5049expr 598 . . . . . 6  |-  ( (
ph  /\  c  e.  ( 0 [,)  +oo ) )  ->  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) )  -> 
( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O ( 1 ) ) )
5150rexlimdva 2752 . . . . 5  |-  ( ph  ->  ( E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) )  -> 
( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O ( 1 ) ) )
5251exlimdv 1641 . . . 4  |-  ( ph  ->  ( E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) )  -> 
( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O ( 1 ) ) )
5324, 52mpd 14 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O ( 1 ) )
547, 8, 9, 10, 11, 12, 13, 18, 27, 28, 30, 32dchrisum0lem1 20888 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O ( 1 ) )
554, 6, 53, 54o1add2 12304 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) )  e.  O
( 1 ) )
56 ovex 6006 . . 3  |-  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  _V
5756a1i 10 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  _V )
58 fzfid 11199 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  ( x ^ 2 ) ) )  e. 
Fin )
59 fzfid 11199 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) )  e. 
Fin )
6019ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  X  e.  D )
61 elfzelz 10951 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) )  ->  m  e.  ZZ )
6261adantl 452 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  m  e.  ZZ )
6310, 7, 11, 8, 60, 62dchrzrhcl 20707 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
6463adantr 451 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
65 elfznn 10972 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) )  ->  m  e.  NN )
6665adantl 452 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  m  e.  NN )
6766nnrpd 10540 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  m  e.  RR+ )
68 elfznn 10972 . . . . . . . . 9  |-  ( d  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  m ) ) )  ->  d  e.  NN )
6968nnrpd 10540 . . . . . . . 8  |-  ( d  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  m ) ) )  ->  d  e.  RR+ )
70 rpmulcl 10526 . . . . . . . 8  |-  ( ( m  e.  RR+  /\  d  e.  RR+ )  ->  (
m  x.  d )  e.  RR+ )
7167, 69, 70syl2an 463 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( m  x.  d )  e.  RR+ )
7271rpsqrcld 12101 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  ( m  x.  d
) )  e.  RR+ )
7372rpcnd 10543 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  ( m  x.  d
) )  e.  CC )
7472rpne0d 10546 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  ( m  x.  d
) )  =/=  0
)
7564, 73, 74divcld 9683 . . . 4  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  (
m  x.  d ) ) )  e.  CC )
7659, 75fsumcl 12414 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  e.  CC )
7758, 76fsumcl 12414 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  e.  CC )
7877abscld 12125 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  e.  RR )
7978adantrr 697 . . 3  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  e.  RR )
8066adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  m  e.  NN )
8180nnrpd 10540 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  m  e.  RR+ )
8281rprege0d 10548 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( m  e.  RR  /\  0  <_  m ) )
8368adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  d  e.  NN )
8483nnrpd 10540 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  d  e.  RR+ )
8584rprege0d 10548 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( d  e.  RR  /\  0  <_ 
d ) )
86 sqrmul 11952 . . . . . . . . . . 11  |-  ( ( ( m  e.  RR  /\  0  <_  m )  /\  ( d  e.  RR  /\  0  <_  d )
)  ->  ( sqr `  ( m  x.  d
) )  =  ( ( sqr `  m
)  x.  ( sqr `  d ) ) )
8782, 85, 86syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  ( m  x.  d
) )  =  ( ( sqr `  m
)  x.  ( sqr `  d ) ) )
8887oveq2d 5997 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  (
m  x.  d ) ) )  =  ( ( X `  ( L `  m )
)  /  ( ( sqr `  m )  x.  ( sqr `  d
) ) ) )
8981rpsqrcld 12101 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  m )  e.  RR+ )
9089rpcnne0d 10550 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( sqr `  m )  e.  CC  /\  ( sqr `  m )  =/=  0
) )
9184rpsqrcld 12101 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  d )  e.  RR+ )
9291rpcnne0d 10550 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( sqr `  d )  e.  CC  /\  ( sqr `  d )  =/=  0
) )
93 divdiv1 9618 . . . . . . . . . 10  |-  ( ( ( X `  ( L `  m )
)  e.  CC  /\  ( ( sqr `  m
)  e.  CC  /\  ( sqr `  m )  =/=  0 )  /\  ( ( sqr `  d
)  e.  CC  /\  ( sqr `  d )  =/=  0 ) )  ->  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  /  ( sqr `  d ) )  =  ( ( X `
 ( L `  m ) )  / 
( ( sqr `  m
)  x.  ( sqr `  d ) ) ) )
9464, 90, 92, 93syl3anc 1183 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) )  =  ( ( X `  ( L `  m )
)  /  ( ( sqr `  m )  x.  ( sqr `  d
) ) ) )
9588, 94eqtr4d 2401 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  (
m  x.  d ) ) )  =  ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )
9695sumeq2dv 12384 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )
9796sumeq2dv 12384 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ m  e.  (
1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )
9897adantrr 697 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ m  e.  (
1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )
99 simpr 447 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
10099rpred 10541 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
101 reflcl 11092 . . . . . . . . . 10  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
102100, 101syl 15 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  e.  RR )
103102ltp1d 9834 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  <  (
( |_ `  x
)  +  1 ) )
104 fzdisj 10970 . . . . . . . 8  |-  ( ( |_ `  x )  <  ( ( |_
`  x )  +  1 )  ->  (
( 1 ... ( |_ `  x ) )  i^i  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) )  =  (/) )
105103, 104syl 15 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
1 ... ( |_ `  x ) )  i^i  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) ) )  =  (/) )
106105adantrr 697 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( 1 ... ( |_ `  x
) )  i^i  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) ) )  =  (/) )
10799rprege0d 10548 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
108 flge0nn0 11112 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
109 nn0p1nn 10152 . . . . . . . . . 10  |-  ( ( |_ `  x )  e.  NN0  ->  ( ( |_ `  x )  +  1 )  e.  NN )
110107, 108, 1093syl 18 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  +  1 )  e.  NN )
111 nnuz 10414 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
112110, 111syl6eleq 2456 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  +  1 )  e.  (
ZZ>= `  1 ) )
113112adantrr 697 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( |_ `  x )  +  1 )  e.  ( ZZ>= ` 
1 ) )
114100adantrr 697 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR )
115 2z 10205 . . . . . . . . . . 11  |-  2  e.  ZZ
116 rpexpcl 11287 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  2  e.  ZZ )  ->  (
x ^ 2 )  e.  RR+ )
11799, 115, 116sylancl 643 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR+ )
118117adantrr 697 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x ^ 2 )  e.  RR+ )
119118rpred 10541 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x ^ 2 )  e.  RR )
120114recnd 9008 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  CC )
121120mulid1d 8999 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  x.  1 )  =  x )
122 simprr 733 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  <_  x )
1231a1i 10 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  e.  RR )
124 rpregt0 10518 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
125124ad2antrl 708 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  e.  RR  /\  0  <  x ) )
126 lemul2 9756 . . . . . . . . . . . 12  |-  ( ( 1  e.  RR  /\  x  e.  RR  /\  (
x  e.  RR  /\  0  <  x ) )  ->  ( 1  <_  x 
<->  ( x  x.  1 )  <_  ( x  x.  x ) ) )
127123, 114, 125, 126syl3anc 1183 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  <_  x  <->  ( x  x.  1 )  <_  ( x  x.  x ) ) )
128122, 127mpbid 201 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  x.  1 )  <_  ( x  x.  x ) )
129121, 128eqbrtrrd 4147 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  <_  ( x  x.  x ) )
130120sqvald 11407 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x ^ 2 )  =  ( x  x.  x ) )
131129, 130breqtrrd 4151 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  <_  ( x ^
2 ) )
132 flword2 11107 . . . . . . . 8  |-  ( ( x  e.  RR  /\  ( x ^ 2 )  e.  RR  /\  x  <_  ( x ^
2 ) )  -> 
( |_ `  (
x ^ 2 ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )
133114, 119, 131, 132syl3anc 1183 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  (
x ^ 2 ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )
134 fzsplit2 10968 . . . . . . 7  |-  ( ( ( ( |_ `  x )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  ( x ^
2 ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  (
x ^ 2 ) ) )  =  ( ( 1 ... ( |_ `  x ) )  u.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) ) )
135113, 133, 134syl2anc 642 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  ( x ^
2 ) ) )  =  ( ( 1 ... ( |_ `  x ) )  u.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) ) ) )
136 fzfid 11199 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  ( x ^
2 ) ) )  e.  Fin )
13796, 76eqeltrrd 2441 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  CC )
138137adantlrr 701 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  CC )
139106, 135, 136, 138fsumsplit 12420 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  =  (
sum_ m  e.  (
1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) )
14098, 139eqtrd 2398 . . . 4  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) )
141140fveq2d 5636 . . 3  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  =  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) ) )
142 eqle 9070 . . 3  |-  ( ( ( abs `  sum_ m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  e.  RR  /\  ( abs `  sum_ m  e.  ( 1 ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  =  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  <_  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) ) )
14379, 141, 142syl2anc 642 . 2  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  <_  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) ) )
1442, 55, 57, 77, 143o1le 12333 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1546    = wceq 1647    e. wcel 1715    =/= wne 2529   A.wral 2628   E.wrex 2629   {crab 2632   _Vcvv 2873    \ cdif 3235    u. cun 3236    i^i cin 3237    C_ wss 3238   (/)c0 3543   {csn 3729   class class class wbr 4125    e. cmpt 4179   dom cdm 4792   -->wf 5354   ` cfv 5358  (class class class)co 5981   supcsup 7340   CCcc 8882   RRcr 8883   0cc0 8884   1c1 8885    + caddc 8887    x. cmul 8889    +oocpnf 9011   RR*cxr 9013    < clt 9014    <_ cle 9015    - cmin 9184    / cdiv 9570   NNcn 9893   2c2 9942   NN0cn0 10114   ZZcz 10175   ZZ>=cuz 10381   RR+crp 10505   [,)cico 10811   ...cfz 10935   |_cfl 11088    seq cseq 11210   ^cexp 11269   sqrcsqr 11925   abscabs 11926    ~~> cli 12165    ~~> r crli 12166   O (
1 )co1 12167   sum_csu 12366   Basecbs 13356   0gc0g 13610   ZRHomczrh 16668  ℤ/nczn 16671  DChrcdchr 20694
This theorem is referenced by:  dchrisum0  20892
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-inf2 7489  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962  ax-addf 8963  ax-mulf 8964
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-iin 4010  df-disj 4096  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-se 4456  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-isom 5367  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-of 6205  df-1st 6249  df-2nd 6250  df-tpos 6376  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-2o 6622  df-oadd 6625  df-omul 6626  df-er 6802  df-ec 6804  df-qs 6808  df-map 6917  df-pm 6918  df-ixp 6961  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-fi 7312  df-sup 7341  df-oi 7372  df-card 7719  df-acn 7722  df-cda 7941  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-div 9571  df-nn 9894  df-2 9951  df-3 9952  df-4 9953  df-5 9954  df-6 9955  df-7 9956  df-8 9957  df-9 9958  df-10 9959  df-n0 10115  df-z 10176  df-dec 10276  df-uz 10382  df-q 10468  df-rp 10506  df-xneg 10603  df-xadd 10604  df-xmul 10605  df-ioo 10813  df-ioc 10814  df-ico 10815  df-icc 10816  df-fz 10936  df-fzo 11026  df-fl 11089  df-mod 11138  df-seq 11211  df-exp 11270  df-fac 11454  df-bc 11481  df-hash 11506  df-shft 11769  df-cj 11791  df-re 11792  df-im 11793  df-sqr 11927  df-abs 11928  df-limsup 12152  df-clim 12169  df-rlim 12170  df-o1 12171  df-lo1 12172  df-sum 12367  df-ef 12557  df-sin 12559  df-cos 12560  df-pi 12562  df-dvds 12740  df-gcd 12894  df-phi 13042  df-struct 13358  df-ndx 13359  df-slot 13360  df-base 13361  df-sets 13362  df-ress 13363  df-plusg 13429  df-mulr 13430  df-starv 13431  df-sca 13432  df-vsca 13433  df-tset 13435  df-ple 13436  df-ds 13438  df-unif 13439  df-hom 13440  df-cco 13441  df-rest 13537  df-topn 13538  df-topgen 13554  df-pt 13555  df-prds 13558  df-xrs 13613  df-0g 13614  df-gsum 13615  df-qtop 13620  df-imas 13621  df-divs 13622  df-xps 13623  df-mre 13698  df-mrc 13699  df-acs 13701  df-mnd 14577  df-mhm 14625  df-submnd 14626  df-grp 14699  df-minusg 14700  df-sbg 14701  df-mulg 14702  df-subg 14828  df-nsg 14829  df-eqg 14830  df-ghm 14891  df-cntz 15003  df-od 15054  df-cmn 15301  df-abl 15302  df-mgp 15536  df-rng 15550  df-cring 15551  df-ur 15552  df-oppr 15615  df-dvdsr 15633  df-unit 15634  df-invr 15664  df-dvr 15675  df-rnghom 15706  df-drng 15724  df-subrg 15753  df-lmod 15839  df-lss 15900  df-lsp 15939  df-sra 16135  df-rgmod 16136  df-lidl 16137  df-rsp 16138  df-2idl 16194  df-xmet 16586  df-met 16587  df-bl 16588  df-mopn 16589  df-fbas 16590  df-fg 16591  df-cnfld 16594  df-zrh 16672  df-zn 16675  df-top 16853  df-bases 16855  df-topon 16856  df-topsp 16857  df-cld 16973  df-ntr 16974  df-cls 16975  df-nei 17052  df-lp 17085  df-perf 17086  df-cn 17174  df-cnp 17175  df-haus 17260  df-cmp 17331  df-tx 17474  df-hmeo 17663  df-fil 17754  df-fm 17846  df-flim 17847  df-flf 17848  df-xms 18098  df-ms 18099  df-tms 18100  df-cncf 18596  df-limc 19431  df-dv 19432  df-log 20132  df-cxp 20133  df-dchr 20695
  Copyright terms: Public domain W3C validator