MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem3 Structured version   Unicode version

Theorem dchrisum0lem3 21213
Description: Lemma for dchrisum0 21214. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
dchrisum0lem1.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
dchrisum0.c  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
dchrisum0.s  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  S )
dchrisum0.1  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) ) )
Assertion
Ref Expression
dchrisum0lem3  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O ( 1 ) )
Distinct variable groups:    x, m, y,  .1.    m, d, x, y, C    F, d, x, y   
a, d, m, x, y    m, N, x, y    ph, d, m, x    S, d, m, x, y   
x, W    m, Z, x, y    D, m, x, y    L, a, d, m, x, y    X, a, d, m, x, y   
m, F
Allowed substitution hints:    ph( y, a)    C( a)    D( a, d)    S( a)    .1. ( a, d)    F( a)    G( x, y, m, a, d)    N( a, d)    W( y, m, a, d)    Z( a, d)

Proof of Theorem dchrisum0lem3
Dummy variables  c 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1re 9090 . . 3  |-  1  e.  RR
21a1i 11 . 2  |-  ( ph  ->  1  e.  RR )
3 sumex 12481 . . . 4  |-  sum_ m  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  _V
43a1i 11 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  _V )
5 sumex 12481 . . . 4  |-  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  _V
65a1i 11 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  _V )
7 rpvmasum.z . . . . 5  |-  Z  =  (ℤ/n `  N )
8 rpvmasum.l . . . . 5  |-  L  =  ( ZRHom `  Z
)
9 rpvmasum.a . . . . 5  |-  ( ph  ->  N  e.  NN )
10 rpvmasum2.g . . . . 5  |-  G  =  (DChr `  N )
11 rpvmasum2.d . . . . 5  |-  D  =  ( Base `  G
)
12 rpvmasum2.1 . . . . 5  |-  .1.  =  ( 0g `  G )
13 rpvmasum2.w . . . . . . . 8  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
14 ssrab2 3428 . . . . . . . 8  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
1513, 14eqsstri 3378 . . . . . . 7  |-  W  C_  ( D  \  {  .1.  } )
16 difss 3474 . . . . . . 7  |-  ( D 
\  {  .1.  }
)  C_  D
1715, 16sstri 3357 . . . . . 6  |-  W  C_  D
18 dchrisum0.b . . . . . 6  |-  ( ph  ->  X  e.  W )
1917, 18sseldi 3346 . . . . 5  |-  ( ph  ->  X  e.  D )
2015, 18sseldi 3346 . . . . . 6  |-  ( ph  ->  X  e.  ( D 
\  {  .1.  }
) )
21 eldifsni 3928 . . . . . 6  |-  ( X  e.  ( D  \  {  .1.  } )  ->  X  =/=  .1.  )
2220, 21syl 16 . . . . 5  |-  ( ph  ->  X  =/=  .1.  )
23 eqid 2436 . . . . 5  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) )  =  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) )
247, 8, 9, 10, 11, 12, 19, 22, 23dchrmusumlema 21187 . . . 4  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) )
259adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  N  e.  NN )
2618adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  X  e.  W )
27 dchrisum0lem1.f . . . . . . 7  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
28 dchrisum0.c . . . . . . . 8  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
2928adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  C  e.  ( 0 [,)  +oo ) )
30 dchrisum0.s . . . . . . . 8  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  S )
3130adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  seq  1
(  +  ,  F
)  ~~>  S )
32 dchrisum0.1 . . . . . . . 8  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) ) )
3332adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  A. y  e.  ( 1 [,)  +oo ) ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) ) )
34 eqid 2436 . . . . . . 7  |-  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) )  =  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) )
3534divsqrsum 20820 . . . . . . . . 9  |-  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) )  e.  dom  ~~> r
3634divsqrsumf 20819 . . . . . . . . . . . 12  |-  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) ) : RR+ --> RR
37 ax-resscn 9047 . . . . . . . . . . . 12  |-  RR  C_  CC
38 fss 5599 . . . . . . . . . . . 12  |-  ( ( ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) ) : RR+ --> RR  /\  RR  C_  CC )  ->  (
y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) ) : RR+ --> CC )
3936, 37, 38mp2an 654 . . . . . . . . . . 11  |-  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) ) : RR+ --> CC
4039a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) ) : RR+ --> CC )
41 rpsup 11247 . . . . . . . . . . 11  |-  sup ( RR+ ,  RR* ,  <  )  =  +oo
4241a1i 11 . . . . . . . . . 10  |-  ( ph  ->  sup ( RR+ ,  RR* ,  <  )  =  +oo )
4340, 42rlimdm 12345 . . . . . . . . 9  |-  ( ph  ->  ( ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )  e.  dom  ~~> r  <->  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )  ~~> r  (  ~~> r  `  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) ) ) ) )
4435, 43mpbii 203 . . . . . . . 8  |-  ( ph  ->  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )  ~~> r  (  ~~> r  `  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) ) ) )
4544adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )  ~~> r  (  ~~> r  `  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) ) ) )
46 simprl 733 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  c  e.  ( 0 [,)  +oo ) )
47 simprrl 741 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t )
48 simprrr 742 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  A. y  e.  ( 1 [,)  +oo ) ( abs `  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
y ) )
497, 8, 25, 10, 11, 12, 13, 26, 27, 29, 31, 33, 34, 45, 23, 46, 47, 48dchrisum0lem2 21212 . . . . . 6  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  O ( 1 ) )
5049rexlimdvaa 2831 . . . . 5  |-  ( ph  ->  ( E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) )  -> 
( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O ( 1 ) ) )
5150exlimdv 1646 . . . 4  |-  ( ph  ->  ( E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) )  -> 
( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O ( 1 ) ) )
5224, 51mpd 15 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O ( 1 ) )
537, 8, 9, 10, 11, 12, 13, 18, 27, 28, 30, 32dchrisum0lem1 21210 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O ( 1 ) )
544, 6, 52, 53o1add2 12417 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) )  e.  O
( 1 ) )
55 ovex 6106 . . 3  |-  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  _V
5655a1i 11 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  _V )
57 fzfid 11312 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  ( x ^ 2 ) ) )  e. 
Fin )
58 fzfid 11312 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) )  e. 
Fin )
5919ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  X  e.  D )
60 elfzelz 11059 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) )  ->  m  e.  ZZ )
6160adantl 453 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  m  e.  ZZ )
6210, 7, 11, 8, 59, 61dchrzrhcl 21029 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
6362adantr 452 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
64 elfznn 11080 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) )  ->  m  e.  NN )
6564adantl 453 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  m  e.  NN )
6665nnrpd 10647 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  m  e.  RR+ )
67 elfznn 11080 . . . . . . . . 9  |-  ( d  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  m ) ) )  ->  d  e.  NN )
6867nnrpd 10647 . . . . . . . 8  |-  ( d  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  m ) ) )  ->  d  e.  RR+ )
69 rpmulcl 10633 . . . . . . . 8  |-  ( ( m  e.  RR+  /\  d  e.  RR+ )  ->  (
m  x.  d )  e.  RR+ )
7066, 68, 69syl2an 464 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( m  x.  d )  e.  RR+ )
7170rpsqrcld 12214 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  ( m  x.  d
) )  e.  RR+ )
7271rpcnd 10650 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  ( m  x.  d
) )  e.  CC )
7371rpne0d 10653 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  ( m  x.  d
) )  =/=  0
)
7463, 72, 73divcld 9790 . . . 4  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  (
m  x.  d ) ) )  e.  CC )
7558, 74fsumcl 12527 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  e.  CC )
7657, 75fsumcl 12527 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  e.  CC )
7776abscld 12238 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  e.  RR )
7877adantrr 698 . . 3  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  e.  RR )
7965adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  m  e.  NN )
8079nnrpd 10647 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  m  e.  RR+ )
8180rprege0d 10655 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( m  e.  RR  /\  0  <_  m ) )
8267adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  d  e.  NN )
8382nnrpd 10647 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  d  e.  RR+ )
8483rprege0d 10655 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( d  e.  RR  /\  0  <_ 
d ) )
85 sqrmul 12065 . . . . . . . . . . 11  |-  ( ( ( m  e.  RR  /\  0  <_  m )  /\  ( d  e.  RR  /\  0  <_  d )
)  ->  ( sqr `  ( m  x.  d
) )  =  ( ( sqr `  m
)  x.  ( sqr `  d ) ) )
8681, 84, 85syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  ( m  x.  d
) )  =  ( ( sqr `  m
)  x.  ( sqr `  d ) ) )
8786oveq2d 6097 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  (
m  x.  d ) ) )  =  ( ( X `  ( L `  m )
)  /  ( ( sqr `  m )  x.  ( sqr `  d
) ) ) )
8880rpsqrcld 12214 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  m )  e.  RR+ )
8988rpcnne0d 10657 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( sqr `  m )  e.  CC  /\  ( sqr `  m )  =/=  0
) )
9083rpsqrcld 12214 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  d )  e.  RR+ )
9190rpcnne0d 10657 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( sqr `  d )  e.  CC  /\  ( sqr `  d )  =/=  0
) )
92 divdiv1 9725 . . . . . . . . . 10  |-  ( ( ( X `  ( L `  m )
)  e.  CC  /\  ( ( sqr `  m
)  e.  CC  /\  ( sqr `  m )  =/=  0 )  /\  ( ( sqr `  d
)  e.  CC  /\  ( sqr `  d )  =/=  0 ) )  ->  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  /  ( sqr `  d ) )  =  ( ( X `
 ( L `  m ) )  / 
( ( sqr `  m
)  x.  ( sqr `  d ) ) ) )
9363, 89, 91, 92syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) )  =  ( ( X `  ( L `  m )
)  /  ( ( sqr `  m )  x.  ( sqr `  d
) ) ) )
9487, 93eqtr4d 2471 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  (
m  x.  d ) ) )  =  ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )
9594sumeq2dv 12497 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )
9695sumeq2dv 12497 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ m  e.  (
1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )
9796adantrr 698 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ m  e.  (
1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )
98 simpr 448 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
9998rpred 10648 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
100 reflcl 11205 . . . . . . . . . 10  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
10199, 100syl 16 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  e.  RR )
102101ltp1d 9941 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  <  (
( |_ `  x
)  +  1 ) )
103 fzdisj 11078 . . . . . . . 8  |-  ( ( |_ `  x )  <  ( ( |_
`  x )  +  1 )  ->  (
( 1 ... ( |_ `  x ) )  i^i  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) )  =  (/) )
104102, 103syl 16 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
1 ... ( |_ `  x ) )  i^i  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) ) )  =  (/) )
105104adantrr 698 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( 1 ... ( |_ `  x
) )  i^i  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) ) )  =  (/) )
10698rprege0d 10655 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
107 flge0nn0 11225 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
108 nn0p1nn 10259 . . . . . . . . . 10  |-  ( ( |_ `  x )  e.  NN0  ->  ( ( |_ `  x )  +  1 )  e.  NN )
109106, 107, 1083syl 19 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  +  1 )  e.  NN )
110 nnuz 10521 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
111109, 110syl6eleq 2526 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  +  1 )  e.  (
ZZ>= `  1 ) )
112111adantrr 698 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( |_ `  x )  +  1 )  e.  ( ZZ>= ` 
1 ) )
11399adantrr 698 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR )
114 2z 10312 . . . . . . . . . . 11  |-  2  e.  ZZ
115 rpexpcl 11400 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  2  e.  ZZ )  ->  (
x ^ 2 )  e.  RR+ )
11698, 114, 115sylancl 644 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR+ )
117116adantrr 698 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x ^ 2 )  e.  RR+ )
118117rpred 10648 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x ^ 2 )  e.  RR )
119113recnd 9114 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  CC )
120119mulid1d 9105 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  x.  1 )  =  x )
121 simprr 734 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  <_  x )
1221a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  e.  RR )
123 rpregt0 10625 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
124123ad2antrl 709 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  e.  RR  /\  0  <  x ) )
125 lemul2 9863 . . . . . . . . . . . 12  |-  ( ( 1  e.  RR  /\  x  e.  RR  /\  (
x  e.  RR  /\  0  <  x ) )  ->  ( 1  <_  x 
<->  ( x  x.  1 )  <_  ( x  x.  x ) ) )
126122, 113, 124, 125syl3anc 1184 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  <_  x  <->  ( x  x.  1 )  <_  ( x  x.  x ) ) )
127121, 126mpbid 202 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  x.  1 )  <_  ( x  x.  x ) )
128120, 127eqbrtrrd 4234 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  <_  ( x  x.  x ) )
129119sqvald 11520 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x ^ 2 )  =  ( x  x.  x ) )
130128, 129breqtrrd 4238 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  <_  ( x ^
2 ) )
131 flword2 11220 . . . . . . . 8  |-  ( ( x  e.  RR  /\  ( x ^ 2 )  e.  RR  /\  x  <_  ( x ^
2 ) )  -> 
( |_ `  (
x ^ 2 ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )
132113, 118, 130, 131syl3anc 1184 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  (
x ^ 2 ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )
133 fzsplit2 11076 . . . . . . 7  |-  ( ( ( ( |_ `  x )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  ( x ^
2 ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  (
x ^ 2 ) ) )  =  ( ( 1 ... ( |_ `  x ) )  u.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) ) )
134112, 132, 133syl2anc 643 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  ( x ^
2 ) ) )  =  ( ( 1 ... ( |_ `  x ) )  u.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) ) ) )
135 fzfid 11312 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  ( x ^
2 ) ) )  e.  Fin )
13695, 75eqeltrrd 2511 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  CC )
137136adantlrr 702 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  CC )
138105, 134, 135, 137fsumsplit 12533 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  =  (
sum_ m  e.  (
1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) )
13997, 138eqtrd 2468 . . . 4  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) )
140139fveq2d 5732 . . 3  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  =  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) ) )
141 eqle 9176 . . 3  |-  ( ( ( abs `  sum_ m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  e.  RR  /\  ( abs `  sum_ m  e.  ( 1 ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  =  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  <_  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) ) )
14278, 140, 141syl2anc 643 . 2  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  <_  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) ) )
1432, 54, 56, 76, 142o1le 12446 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   E.wrex 2706   {crab 2709   _Vcvv 2956    \ cdif 3317    u. cun 3318    i^i cin 3319    C_ wss 3320   (/)c0 3628   {csn 3814   class class class wbr 4212    e. cmpt 4266   dom cdm 4878   -->wf 5450   ` cfv 5454  (class class class)co 6081   supcsup 7445   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    +oocpnf 9117   RR*cxr 9119    < clt 9120    <_ cle 9121    - cmin 9291    / cdiv 9677   NNcn 10000   2c2 10049   NN0cn0 10221   ZZcz 10282   ZZ>=cuz 10488   RR+crp 10612   [,)cico 10918   ...cfz 11043   |_cfl 11201    seq cseq 11323   ^cexp 11382   sqrcsqr 12038   abscabs 12039    ~~> cli 12278    ~~> r crli 12279   O (
1 )co1 12280   sum_csu 12479   Basecbs 13469   0gc0g 13723   ZRHomczrh 16778  ℤ/nczn 16781  DChrcdchr 21016
This theorem is referenced by:  dchrisum0  21214
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-disj 4183  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-tpos 6479  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-omul 6729  df-er 6905  df-ec 6907  df-qs 6911  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-acn 7829  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ioc 10921  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-shft 11882  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-o1 12284  df-lo1 12285  df-sum 12480  df-ef 12670  df-sin 12672  df-cos 12673  df-pi 12675  df-dvds 12853  df-gcd 13007  df-phi 13155  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-divs 13735  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-mhm 14738  df-submnd 14739  df-grp 14812  df-minusg 14813  df-sbg 14814  df-mulg 14815  df-subg 14941  df-nsg 14942  df-eqg 14943  df-ghm 15004  df-cntz 15116  df-od 15167  df-cmn 15414  df-abl 15415  df-mgp 15649  df-rng 15663  df-cring 15664  df-ur 15665  df-oppr 15728  df-dvdsr 15746  df-unit 15747  df-invr 15777  df-dvr 15788  df-rnghom 15819  df-drng 15837  df-subrg 15866  df-lmod 15952  df-lss 16009  df-lsp 16048  df-sra 16244  df-rgmod 16245  df-lidl 16246  df-rsp 16247  df-2idl 16303  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-zrh 16782  df-zn 16785  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-cmp 17450  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-limc 19753  df-dv 19754  df-log 20454  df-cxp 20455  df-dchr 21017
  Copyright terms: Public domain W3C validator