MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lema Unicode version

Theorem dchrisum0lema 20679
Description: Lemma for dchrisum0 20685. Apply dchrisum 20657 for the function  1  /  sqr y. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
dchrisum0lem1.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
Assertion
Ref Expression
dchrisum0lema  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  y ) )  -  t ) )  <_ 
( c  /  ( sqr `  y ) ) ) )
Distinct variable groups:    y, m, c, t,  .1.    F, c, t, y    a, c, m, t, y    N, c, m, t, y    ph, c, m, t    W, c, t   
m, Z, y    D, c, m, t, y    L, a, c, m, t, y    X, a, c, m, t, y    m, F
Allowed substitution hints:    ph( y, a)    D( a)    .1. ( a)    F( a)    G( y, t, m, a, c)    N( a)    W( y, m, a)    Z( t, a, c)

Proof of Theorem dchrisum0lema
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . 3  |-  Z  =  (ℤ/n `  N )
2 rpvmasum.l . . 3  |-  L  =  ( ZRHom `  Z
)
3 rpvmasum.a . . 3  |-  ( ph  ->  N  e.  NN )
4 rpvmasum2.g . . 3  |-  G  =  (DChr `  N )
5 rpvmasum2.d . . 3  |-  D  =  ( Base `  G
)
6 rpvmasum2.1 . . 3  |-  .1.  =  ( 0g `  G )
7 rpvmasum2.w . . . . . 6  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
8 ssrab2 3271 . . . . . 6  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
97, 8eqsstri 3221 . . . . 5  |-  W  C_  ( D  \  {  .1.  } )
10 dchrisum0.b . . . . 5  |-  ( ph  ->  X  e.  W )
119, 10sseldi 3191 . . . 4  |-  ( ph  ->  X  e.  ( D 
\  {  .1.  }
) )
12 eldifi 3311 . . . 4  |-  ( X  e.  ( D  \  {  .1.  } )  ->  X  e.  D )
1311, 12syl 15 . . 3  |-  ( ph  ->  X  e.  D )
14 eldifsni 3763 . . . 4  |-  ( X  e.  ( D  \  {  .1.  } )  ->  X  =/=  .1.  )
1511, 14syl 15 . . 3  |-  ( ph  ->  X  =/=  .1.  )
16 fveq2 5541 . . . 4  |-  ( n  =  x  ->  ( sqr `  n )  =  ( sqr `  x
) )
1716oveq2d 5890 . . 3  |-  ( n  =  x  ->  (
1  /  ( sqr `  n ) )  =  ( 1  /  ( sqr `  x ) ) )
18 1nn 9773 . . . 4  |-  1  e.  NN
1918a1i 10 . . 3  |-  ( ph  ->  1  e.  NN )
20 rpsqrcl 11766 . . . . 5  |-  ( n  e.  RR+  ->  ( sqr `  n )  e.  RR+ )
2120adantl 452 . . . 4  |-  ( (
ph  /\  n  e.  RR+ )  ->  ( sqr `  n )  e.  RR+ )
2221rprecred 10417 . . 3  |-  ( (
ph  /\  n  e.  RR+ )  ->  ( 1  /  ( sqr `  n
) )  e.  RR )
23 simp3r 984 . . . . 5  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
1  <_  n  /\  n  <_  x ) )  ->  n  <_  x
)
24 simp2l 981 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
1  <_  n  /\  n  <_  x ) )  ->  n  e.  RR+ )
2524rprege0d 10413 . . . . . 6  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
1  <_  n  /\  n  <_  x ) )  ->  ( n  e.  RR  /\  0  <_  n ) )
26 simp2r 982 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
1  <_  n  /\  n  <_  x ) )  ->  x  e.  RR+ )
2726rprege0d 10413 . . . . . 6  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
1  <_  n  /\  n  <_  x ) )  ->  ( x  e.  RR  /\  0  <_  x ) )
28 sqrle 11762 . . . . . 6  |-  ( ( ( n  e.  RR  /\  0  <_  n )  /\  ( x  e.  RR  /\  0  <_  x )
)  ->  ( n  <_  x  <->  ( sqr `  n
)  <_  ( sqr `  x ) ) )
2925, 27, 28syl2anc 642 . . . . 5  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
1  <_  n  /\  n  <_  x ) )  ->  ( n  <_  x 
<->  ( sqr `  n
)  <_  ( sqr `  x ) ) )
3023, 29mpbid 201 . . . 4  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
1  <_  n  /\  n  <_  x ) )  ->  ( sqr `  n
)  <_  ( sqr `  x ) )
3124rpsqrcld 11910 . . . . 5  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
1  <_  n  /\  n  <_  x ) )  ->  ( sqr `  n
)  e.  RR+ )
3226rpsqrcld 11910 . . . . 5  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
1  <_  n  /\  n  <_  x ) )  ->  ( sqr `  x
)  e.  RR+ )
3331, 32lerecd 10425 . . . 4  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
1  <_  n  /\  n  <_  x ) )  ->  ( ( sqr `  n )  <_  ( sqr `  x )  <->  ( 1  /  ( sqr `  x
) )  <_  (
1  /  ( sqr `  n ) ) ) )
3430, 33mpbid 201 . . 3  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
1  <_  n  /\  n  <_  x ) )  ->  ( 1  / 
( sqr `  x
) )  <_  (
1  /  ( sqr `  n ) ) )
35 sqrlim 20283 . . . 4  |-  ( n  e.  RR+  |->  ( 1  /  ( sqr `  n
) ) )  ~~> r  0
3635a1i 10 . . 3  |-  ( ph  ->  ( n  e.  RR+  |->  ( 1  /  ( sqr `  n ) ) )  ~~> r  0 )
37 fveq2 5541 . . . . . 6  |-  ( a  =  n  ->  ( L `  a )  =  ( L `  n ) )
3837fveq2d 5545 . . . . 5  |-  ( a  =  n  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  n )
) )
39 fveq2 5541 . . . . . 6  |-  ( a  =  n  ->  ( sqr `  a )  =  ( sqr `  n
) )
4039oveq2d 5890 . . . . 5  |-  ( a  =  n  ->  (
1  /  ( sqr `  a ) )  =  ( 1  /  ( sqr `  n ) ) )
4138, 40oveq12d 5892 . . . 4  |-  ( a  =  n  ->  (
( X `  ( L `  a )
)  x.  ( 1  /  ( sqr `  a
) ) )  =  ( ( X `  ( L `  n ) )  x.  ( 1  /  ( sqr `  n
) ) ) )
4241cbvmptv 4127 . . 3  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
( sqr `  a
) ) ) )  =  ( n  e.  NN  |->  ( ( X `
 ( L `  n ) )  x.  ( 1  /  ( sqr `  n ) ) ) )
431, 2, 3, 4, 5, 6, 13, 15, 17, 19, 22, 34, 36, 42dchrisum 20657 . 2  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  ( sqr `  a
) ) ) ) )  ~~>  t  /\  A. x  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  ( sqr `  a
) ) ) ) ) `  ( |_
`  x ) )  -  t ) )  <_  ( c  x.  ( 1  /  ( sqr `  x ) ) ) ) )
4413adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  X  e.  D )
45 nnz 10061 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  ZZ )
4645adantl 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  ZZ )
474, 1, 5, 2, 44, 46dchrzrhcl 20500 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( X `
 ( L `  n ) )  e.  CC )
48 simpr 447 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  NN )
4948nnrpd 10405 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  RR+ )
5049rpsqrcld 11910 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( sqr `  n )  e.  RR+ )
5150rpcnd 10408 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( sqr `  n )  e.  CC )
5250rpne0d 10411 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( sqr `  n )  =/=  0
)
5347, 51, 52divrecd 9555 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( X `  ( L `
 n ) )  /  ( sqr `  n
) )  =  ( ( X `  ( L `  n )
)  x.  ( 1  /  ( sqr `  n
) ) ) )
5453mpteq2dva 4122 . . . . . . . . 9  |-  ( ph  ->  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  /  ( sqr `  n ) ) )  =  ( n  e.  NN  |->  ( ( X `
 ( L `  n ) )  x.  ( 1  /  ( sqr `  n ) ) ) ) )
55 dchrisum0lem1.f . . . . . . . . . 10  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
5638, 39oveq12d 5892 . . . . . . . . . . 11  |-  ( a  =  n  ->  (
( X `  ( L `  a )
)  /  ( sqr `  a ) )  =  ( ( X `  ( L `  n ) )  /  ( sqr `  n ) ) )
5756cbvmptv 4127 . . . . . . . . . 10  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) ) )  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  /  ( sqr `  n ) ) )
5855, 57eqtri 2316 . . . . . . . . 9  |-  F  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  /  ( sqr `  n ) ) )
5954, 58, 423eqtr4g 2353 . . . . . . . 8  |-  ( ph  ->  F  =  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
( sqr `  a
) ) ) ) )
6059seqeq3d 11070 . . . . . . 7  |-  ( ph  ->  seq  1 (  +  ,  F )  =  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  ( sqr `  a ) ) ) ) ) )
6160breq1d 4049 . . . . . 6  |-  ( ph  ->  (  seq  1 (  +  ,  F )  ~~>  t  <->  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  ( sqr `  a ) ) ) ) )  ~~>  t ) )
6261adantr 451 . . . . 5  |-  ( (
ph  /\  c  e.  ( 0 [,)  +oo ) )  ->  (  seq  1 (  +  ,  F )  ~~>  t  <->  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  ( sqr `  a
) ) ) ) )  ~~>  t ) )
63 fveq2 5541 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( |_ `  y )  =  ( |_ `  x
) )
6463fveq2d 5545 . . . . . . . . . 10  |-  ( y  =  x  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  =  (  seq  1
(  +  ,  F
) `  ( |_ `  x ) ) )
6564oveq1d 5889 . . . . . . . . 9  |-  ( y  =  x  ->  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  t )  =  ( (  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t ) )
6665fveq2d 5545 . . . . . . . 8  |-  ( y  =  x  ->  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  =  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t ) ) )
67 fveq2 5541 . . . . . . . . 9  |-  ( y  =  x  ->  ( sqr `  y )  =  ( sqr `  x
) )
6867oveq2d 5890 . . . . . . . 8  |-  ( y  =  x  ->  (
c  /  ( sqr `  y ) )  =  ( c  /  ( sqr `  x ) ) )
6966, 68breq12d 4052 . . . . . . 7  |-  ( y  =  x  ->  (
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  ( sqr `  y ) )  <-> 
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  /  ( sqr `  x ) ) ) )
7069cbvralv 2777 . . . . . 6  |-  ( A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  y ) )  -  t ) )  <_ 
( c  /  ( sqr `  y ) )  <->  A. x  e.  (
1 [,)  +oo ) ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) )  <_  ( c  /  ( sqr `  x
) ) )
7159ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  F  =  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  ( sqr `  a ) ) ) ) )
7271seqeq3d 11070 . . . . . . . . . . 11  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  seq  1 (  +  ,  F )  =  seq  1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  x.  ( 1  /  ( sqr `  a
) ) ) ) ) )
7372fveq1d 5543 . . . . . . . . . 10  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) )  =  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  ( sqr `  a
) ) ) ) ) `  ( |_
`  x ) ) )
7473oveq1d 5889 . . . . . . . . 9  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t )  =  ( (  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
( sqr `  a
) ) ) ) ) `  ( |_
`  x ) )  -  t ) )
7574fveq2d 5545 . . . . . . . 8  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) )  =  ( abs `  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
( sqr `  a
) ) ) ) ) `  ( |_
`  x ) )  -  t ) ) )
76 elrege0 10762 . . . . . . . . . . . 12  |-  ( c  e.  ( 0 [,) 
+oo )  <->  ( c  e.  RR  /\  0  <_ 
c ) )
7776simplbi 446 . . . . . . . . . . 11  |-  ( c  e.  ( 0 [,) 
+oo )  ->  c  e.  RR )
7877ad2antlr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  c  e.  RR )
7978recnd 8877 . . . . . . . . 9  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  c  e.  CC )
80 1re 8853 . . . . . . . . . . . . . . 15  |-  1  e.  RR
81 elicopnf 10755 . . . . . . . . . . . . . . 15  |-  ( 1  e.  RR  ->  (
x  e.  ( 1 [,)  +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
8280, 81ax-mp 8 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 1 [,) 
+oo )  <->  ( x  e.  RR  /\  1  <_  x ) )
8382simplbi 446 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 [,) 
+oo )  ->  x  e.  RR )
8483adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  x  e.  RR )
85 0re 8854 . . . . . . . . . . . . . 14  |-  0  e.  RR
8685a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  0  e.  RR )
8780a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  1  e.  RR )
88 0lt1 9312 . . . . . . . . . . . . . 14  |-  0  <  1
8988a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  0  <  1 )
9082simprbi 450 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 1 [,) 
+oo )  ->  1  <_  x )
9190adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  1  <_  x )
9286, 87, 84, 89, 91ltletrd 8992 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  0  <  x )
9384, 92elrpd 10404 . . . . . . . . . . 11  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  x  e.  RR+ )
9493rpsqrcld 11910 . . . . . . . . . 10  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  ( sqr `  x )  e.  RR+ )
9594rpcnd 10408 . . . . . . . . 9  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  ( sqr `  x )  e.  CC )
9694rpne0d 10411 . . . . . . . . 9  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  ( sqr `  x )  =/=  0 )
9779, 95, 96divrecd 9555 . . . . . . . 8  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  (
c  /  ( sqr `  x ) )  =  ( c  x.  (
1  /  ( sqr `  x ) ) ) )
9875, 97breq12d 4052 . . . . . . 7  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  (
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  /  ( sqr `  x ) )  <-> 
( abs `  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
( sqr `  a
) ) ) ) ) `  ( |_
`  x ) )  -  t ) )  <_  ( c  x.  ( 1  /  ( sqr `  x ) ) ) ) )
9998ralbidva 2572 . . . . . 6  |-  ( (
ph  /\  c  e.  ( 0 [,)  +oo ) )  ->  ( A. x  e.  (
1 [,)  +oo ) ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) )  <_  ( c  /  ( sqr `  x
) )  <->  A. x  e.  ( 1 [,)  +oo ) ( abs `  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
( sqr `  a
) ) ) ) ) `  ( |_
`  x ) )  -  t ) )  <_  ( c  x.  ( 1  /  ( sqr `  x ) ) ) ) )
10070, 99syl5bb 248 . . . . 5  |-  ( (
ph  /\  c  e.  ( 0 [,)  +oo ) )  ->  ( A. y  e.  (
1 [,)  +oo ) ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  /  ( sqr `  y
) )  <->  A. x  e.  ( 1 [,)  +oo ) ( abs `  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
( sqr `  a
) ) ) ) ) `  ( |_
`  x ) )  -  t ) )  <_  ( c  x.  ( 1  /  ( sqr `  x ) ) ) ) )
10162, 100anbi12d 691 . . . 4  |-  ( (
ph  /\  c  e.  ( 0 [,)  +oo ) )  ->  (
(  seq  1 (  +  ,  F )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  ( sqr `  y ) ) )  <->  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  ( sqr `  a
) ) ) ) )  ~~>  t  /\  A. x  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  ( sqr `  a
) ) ) ) ) `  ( |_
`  x ) )  -  t ) )  <_  ( c  x.  ( 1  /  ( sqr `  x ) ) ) ) ) )
102101rexbidva 2573 . . 3  |-  ( ph  ->  ( E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  y ) )  -  t ) )  <_ 
( c  /  ( sqr `  y ) ) )  <->  E. c  e.  ( 0 [,)  +oo )
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
( sqr `  a
) ) ) ) )  ~~>  t  /\  A. x  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  ( sqr `  a
) ) ) ) ) `  ( |_
`  x ) )  -  t ) )  <_  ( c  x.  ( 1  /  ( sqr `  x ) ) ) ) ) )
103102exbidv 1616 . 2  |-  ( ph  ->  ( E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1 (  +  ,  F )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  y ) )  -  t ) )  <_ 
( c  /  ( sqr `  y ) ) )  <->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  ( sqr `  a
) ) ) ) )  ~~>  t  /\  A. x  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  ( sqr `  a
) ) ) ) ) `  ( |_
`  x ) )  -  t ) )  <_  ( c  x.  ( 1  /  ( sqr `  x ) ) ) ) ) )
10443, 103mpbird 223 1  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  y ) )  -  t ) )  <_ 
( c  /  ( sqr `  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   {crab 2560    \ cdif 3162   {csn 3653   class class class wbr 4039    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    +oocpnf 8880    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   NNcn 9762   ZZcz 10040   RR+crp 10370   [,)cico 10674   |_cfl 10940    seq cseq 11062   sqrcsqr 11734   abscabs 11735    ~~> cli 11974    ~~> r crli 11975   sum_csu 12174   Basecbs 13164   0gc0g 13416   ZRHomczrh 16467  ℤ/nczn 16470  DChrcdchr 20487
This theorem is referenced by:  dchrisum0  20685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-tpos 6250  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-ec 6678  df-qs 6682  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368  df-pi 12370  df-dvds 12548  df-gcd 12702  df-phi 12850  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-divs 13428  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-mhm 14431  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-mulg 14508  df-subg 14634  df-nsg 14635  df-eqg 14636  df-ghm 14697  df-cntz 14809  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-cring 15357  df-ur 15358  df-oppr 15421  df-dvdsr 15439  df-unit 15440  df-invr 15470  df-rnghom 15512  df-subrg 15559  df-lmod 15645  df-lss 15706  df-lsp 15745  df-sra 15941  df-rgmod 15942  df-lidl 15943  df-rsp 15944  df-2idl 16000  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-zrh 16471  df-zn 16474  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-log 19930  df-cxp 19931  df-dchr 20488
  Copyright terms: Public domain W3C validator