MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrpt Unicode version

Theorem dchrpt 20559
Description: For any element other than 1, there is a Dirichlet character that is not one at the given element. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrpt.g  |-  G  =  (DChr `  N )
dchrpt.z  |-  Z  =  (ℤ/n `  N )
dchrpt.d  |-  D  =  ( Base `  G
)
dchrpt.b  |-  B  =  ( Base `  Z
)
dchrpt.1  |-  .1.  =  ( 1r `  Z )
dchrpt.n  |-  ( ph  ->  N  e.  NN )
dchrpt.n1  |-  ( ph  ->  A  =/=  .1.  )
dchrpt.a  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
dchrpt  |-  ( ph  ->  E. x  e.  D  ( x `  A
)  =/=  1 )
Distinct variable groups:    x,  .1.    x, A    x, B    x, G    x, N    x, Z    x, D    ph, x

Proof of Theorem dchrpt
Dummy variables  a 
b  k  n  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2316 . . . . 5  |-  (Unit `  Z )  =  (Unit `  Z )
2 eqid 2316 . . . . 5  |-  ( (mulGrp `  Z )s  (Unit `  Z )
)  =  ( (mulGrp `  Z )s  (Unit `  Z )
)
31, 2unitgrpbas 15497 . . . 4  |-  (Unit `  Z )  =  (
Base `  ( (mulGrp `  Z )s  (Unit `  Z )
) )
4 eqid 2316 . . . 4  |-  { u  e.  (SubGrp `  ( (mulGrp `  Z )s  (Unit `  Z )
) )  |  ( ( (mulGrp `  Z
)s  (Unit `  Z )
)s  u )  e.  (CycGrp 
i^i  ran pGrp  ) }  =  { u  e.  (SubGrp `  ( (mulGrp `  Z
)s  (Unit `  Z )
) )  |  ( ( (mulGrp `  Z
)s  (Unit `  Z )
)s  u )  e.  (CycGrp 
i^i  ran pGrp  ) }
5 dchrpt.n . . . . . . 7  |-  ( ph  ->  N  e.  NN )
65nnnn0d 10065 . . . . . 6  |-  ( ph  ->  N  e.  NN0 )
7 dchrpt.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
87zncrng 16554 . . . . . 6  |-  ( N  e.  NN0  ->  Z  e. 
CRing )
91, 2unitabl 15499 . . . . . 6  |-  ( Z  e.  CRing  ->  ( (mulGrp `  Z )s  (Unit `  Z )
)  e.  Abel )
106, 8, 93syl 18 . . . . 5  |-  ( ph  ->  ( (mulGrp `  Z
)s  (Unit `  Z )
)  e.  Abel )
1110adantr 451 . . . 4  |-  ( (
ph  /\  A  e.  (Unit `  Z ) )  ->  ( (mulGrp `  Z )s  (Unit `  Z )
)  e.  Abel )
12 dchrpt.b . . . . . . . 8  |-  B  =  ( Base `  Z
)
137, 12znfi 16569 . . . . . . 7  |-  ( N  e.  NN  ->  B  e.  Fin )
145, 13syl 15 . . . . . 6  |-  ( ph  ->  B  e.  Fin )
1512, 1unitss 15491 . . . . . 6  |-  (Unit `  Z )  C_  B
16 ssfi 7126 . . . . . 6  |-  ( ( B  e.  Fin  /\  (Unit `  Z )  C_  B )  ->  (Unit `  Z )  e.  Fin )
1714, 15, 16sylancl 643 . . . . 5  |-  ( ph  ->  (Unit `  Z )  e.  Fin )
1817adantr 451 . . . 4  |-  ( (
ph  /\  A  e.  (Unit `  Z ) )  ->  (Unit `  Z
)  e.  Fin )
19 eqid 2316 . . . 4  |-  (.g `  (
(mulGrp `  Z )s  (Unit `  Z ) ) )  =  (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) )
20 eqid 2316 . . . 4  |-  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  (
(mulGrp `  Z )s  (Unit `  Z ) ) ) ( w `  k
) ) ) )  =  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) )
213, 4, 11, 18, 19, 20ablfac2 15373 . . 3  |-  ( (
ph  /\  A  e.  (Unit `  Z ) )  ->  E. w  e. Word  (Unit `  Z ) ( ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) : dom  w
--> { u  e.  (SubGrp `  ( (mulGrp `  Z
)s  (Unit `  Z )
) )  |  ( ( (mulGrp `  Z
)s  (Unit `  Z )
)s  u )  e.  (CycGrp 
i^i  ran pGrp  ) }  /\  ( (mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )
22 dchrpt.g . . . . . . 7  |-  G  =  (DChr `  N )
23 dchrpt.d . . . . . . 7  |-  D  =  ( Base `  G
)
24 dchrpt.1 . . . . . . 7  |-  .1.  =  ( 1r `  Z )
255ad3antrrr 710 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  N  e.  NN )
26 dchrpt.n1 . . . . . . . 8  |-  ( ph  ->  A  =/=  .1.  )
2726ad3antrrr 710 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  A  =/=  .1.  )
28 oveq1 5907 . . . . . . . . . . 11  |-  ( n  =  b  ->  (
n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) )  =  ( b (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) )
2928cbvmptv 4148 . . . . . . . . . 10  |-  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) )  =  ( b  e.  ZZ  |->  ( b (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) )
30 fveq2 5563 . . . . . . . . . . . 12  |-  ( k  =  a  ->  (
w `  k )  =  ( w `  a ) )
3130oveq2d 5916 . . . . . . . . . . 11  |-  ( k  =  a  ->  (
b (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) )  =  ( b (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 a ) ) )
3231mpteq2dv 4144 . . . . . . . . . 10  |-  ( k  =  a  ->  (
b  e.  ZZ  |->  ( b (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) )  =  ( b  e.  ZZ  |->  ( b (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 a ) ) ) )
3329, 32syl5eq 2360 . . . . . . . . 9  |-  ( k  =  a  ->  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) )  =  ( b  e.  ZZ  |->  ( b (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 a ) ) ) )
3433rneqd 4943 . . . . . . . 8  |-  ( k  =  a  ->  ran  ( n  e.  ZZ  |->  ( n (.g `  (
(mulGrp `  Z )s  (Unit `  Z ) ) ) ( w `  k
) ) )  =  ran  ( b  e.  ZZ  |->  ( b (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 a ) ) ) )
3534cbvmptv 4148 . . . . . . 7  |-  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  (
(mulGrp `  Z )s  (Unit `  Z ) ) ) ( w `  k
) ) ) )  =  ( a  e. 
dom  w  |->  ran  (
b  e.  ZZ  |->  ( b (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 a ) ) ) )
36 simpllr 735 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  A  e.  (Unit `  Z )
)
37 simplr 731 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  w  e. Word  (Unit `  Z )
)
38 simprl 732 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )
39 simprr 733 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
)
4022, 7, 23, 12, 24, 25, 27, 1, 2, 19, 35, 36, 37, 38, 39dchrptlem3 20558 . . . . . 6  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  E. x  e.  D  ( x `  A )  =/=  1
)
41403adantr1 1114 . . . . 5  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) : dom  w
--> { u  e.  (SubGrp `  ( (mulGrp `  Z
)s  (Unit `  Z )
) )  |  ( ( (mulGrp `  Z
)s  (Unit `  Z )
)s  u )  e.  (CycGrp 
i^i  ran pGrp  ) }  /\  ( (mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  E. x  e.  D  ( x `  A )  =/=  1
)
4241ex 423 . . . 4  |-  ( ( ( ph  /\  A  e.  (Unit `  Z )
)  /\  w  e. Word  (Unit `  Z ) )  -> 
( ( ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  (
(mulGrp `  Z )s  (Unit `  Z ) ) ) ( w `  k
) ) ) ) : dom  w --> { u  e.  (SubGrp `  ( (mulGrp `  Z )s  (Unit `  Z )
) )  |  ( ( (mulGrp `  Z
)s  (Unit `  Z )
)s  u )  e.  (CycGrp 
i^i  ran pGrp  ) }  /\  ( (mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
)  ->  E. x  e.  D  ( x `  A )  =/=  1
) )
4342rexlimdva 2701 . . 3  |-  ( (
ph  /\  A  e.  (Unit `  Z ) )  ->  ( E. w  e. Word  (Unit `  Z )
( ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) : dom  w
--> { u  e.  (SubGrp `  ( (mulGrp `  Z
)s  (Unit `  Z )
) )  |  ( ( (mulGrp `  Z
)s  (Unit `  Z )
)s  u )  e.  (CycGrp 
i^i  ran pGrp  ) }  /\  ( (mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
)  ->  E. x  e.  D  ( x `  A )  =/=  1
) )
4421, 43mpd 14 . 2  |-  ( (
ph  /\  A  e.  (Unit `  Z ) )  ->  E. x  e.  D  ( x `  A
)  =/=  1 )
4522dchrabl 20546 . . . . . 6  |-  ( N  e.  NN  ->  G  e.  Abel )
46 ablgrp 15143 . . . . . 6  |-  ( G  e.  Abel  ->  G  e. 
Grp )
475, 45, 463syl 18 . . . . 5  |-  ( ph  ->  G  e.  Grp )
48 eqid 2316 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
4923, 48grpidcl 14559 . . . . 5  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  D )
5047, 49syl 15 . . . 4  |-  ( ph  ->  ( 0g `  G
)  e.  D )
5150adantr 451 . . 3  |-  ( (
ph  /\  -.  A  e.  (Unit `  Z )
)  ->  ( 0g `  G )  e.  D
)
52 ax-1ne0 8851 . . . . 5  |-  1  =/=  0
5352necomi 2561 . . . 4  |-  0  =/=  1
54 dchrpt.a . . . . . . . 8  |-  ( ph  ->  A  e.  B )
5522, 7, 23, 12, 1, 50, 54dchrn0 20542 . . . . . . 7  |-  ( ph  ->  ( ( ( 0g
`  G ) `  A )  =/=  0  <->  A  e.  (Unit `  Z
) ) )
5655necon1bbid 2533 . . . . . 6  |-  ( ph  ->  ( -.  A  e.  (Unit `  Z )  <->  ( ( 0g `  G
) `  A )  =  0 ) )
5756biimpa 470 . . . . 5  |-  ( (
ph  /\  -.  A  e.  (Unit `  Z )
)  ->  ( ( 0g `  G ) `  A )  =  0 )
5857neeq1d 2492 . . . 4  |-  ( (
ph  /\  -.  A  e.  (Unit `  Z )
)  ->  ( (
( 0g `  G
) `  A )  =/=  1  <->  0  =/=  1
) )
5953, 58mpbiri 224 . . 3  |-  ( (
ph  /\  -.  A  e.  (Unit `  Z )
)  ->  ( ( 0g `  G ) `  A )  =/=  1
)
60 fveq1 5562 . . . . 5  |-  ( x  =  ( 0g `  G )  ->  (
x `  A )  =  ( ( 0g
`  G ) `  A ) )
6160neeq1d 2492 . . . 4  |-  ( x  =  ( 0g `  G )  ->  (
( x `  A
)  =/=  1  <->  (
( 0g `  G
) `  A )  =/=  1 ) )
6261rspcev 2918 . . 3  |-  ( ( ( 0g `  G
)  e.  D  /\  ( ( 0g `  G ) `  A
)  =/=  1 )  ->  E. x  e.  D  ( x `  A
)  =/=  1 )
6351, 59, 62syl2anc 642 . 2  |-  ( (
ph  /\  -.  A  e.  (Unit `  Z )
)  ->  E. x  e.  D  ( x `  A )  =/=  1
)
6444, 63pm2.61dan 766 1  |-  ( ph  ->  E. x  e.  D  ( x `  A
)  =/=  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1633    e. wcel 1701    =/= wne 2479   E.wrex 2578   {crab 2581    i^i cin 3185    C_ wss 3186   class class class wbr 4060    e. cmpt 4114   dom cdm 4726   ran crn 4727   -->wf 5288   ` cfv 5292  (class class class)co 5900   Fincfn 6906   0cc0 8782   1c1 8783   NNcn 9791   NN0cn0 10012   ZZcz 10071  Word cword 11450   Basecbs 13195   ↾s cress 13196   0gc0g 13449   Grpcgrp 14411  .gcmg 14415  SubGrpcsubg 14664   pGrp cpgp 14891   Abelcabel 15139  CycGrpccyg 15213   DProd cdprd 15280  mulGrpcmgp 15374   CRingccrg 15387   1rcur 15388  Unitcui 15470  ℤ/nczn 16510  DChrcdchr 20524
This theorem is referenced by:  sumdchr2  20562
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-inf2 7387  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859  ax-pre-sup 8860  ax-addf 8861  ax-mulf 8862
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-int 3900  df-iun 3944  df-iin 3945  df-disj 4031  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-se 4390  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-isom 5301  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-of 6120  df-1st 6164  df-2nd 6165  df-tpos 6276  df-rpss 6319  df-riota 6346  df-recs 6430  df-rdg 6465  df-1o 6521  df-2o 6522  df-oadd 6525  df-omul 6526  df-er 6702  df-ec 6704  df-qs 6708  df-map 6817  df-pm 6818  df-ixp 6861  df-en 6907  df-dom 6908  df-sdom 6909  df-fin 6910  df-fi 7210  df-sup 7239  df-oi 7270  df-card 7617  df-acn 7620  df-cda 7839  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-div 9469  df-nn 9792  df-2 9849  df-3 9850  df-4 9851  df-5 9852  df-6 9853  df-7 9854  df-8 9855  df-9 9856  df-10 9857  df-n0 10013  df-z 10072  df-dec 10172  df-uz 10278  df-q 10364  df-rp 10402  df-xneg 10499  df-xadd 10500  df-xmul 10501  df-ioo 10707  df-ioc 10708  df-ico 10709  df-icc 10710  df-fz 10830  df-fzo 10918  df-fl 10972  df-mod 11021  df-seq 11094  df-exp 11152  df-fac 11336  df-bc 11363  df-hash 11385  df-word 11456  df-concat 11457  df-s1 11458  df-shft 11609  df-cj 11631  df-re 11632  df-im 11633  df-sqr 11767  df-abs 11768  df-limsup 11992  df-clim 12009  df-rlim 12010  df-sum 12206  df-ef 12396  df-sin 12398  df-cos 12399  df-pi 12401  df-dvds 12579  df-gcd 12733  df-prm 12806  df-pc 12937  df-struct 13197  df-ndx 13198  df-slot 13199  df-base 13200  df-sets 13201  df-ress 13202  df-plusg 13268  df-mulr 13269  df-starv 13270  df-sca 13271  df-vsca 13272  df-tset 13274  df-ple 13275  df-ds 13277  df-unif 13278  df-hom 13279  df-cco 13280  df-rest 13376  df-topn 13377  df-topgen 13393  df-pt 13394  df-prds 13397  df-xrs 13452  df-0g 13453  df-gsum 13454  df-qtop 13459  df-imas 13460  df-divs 13461  df-xps 13462  df-mre 13537  df-mrc 13538  df-acs 13540  df-mnd 14416  df-mhm 14464  df-submnd 14465  df-grp 14538  df-minusg 14539  df-sbg 14540  df-mulg 14541  df-subg 14667  df-nsg 14668  df-eqg 14669  df-ghm 14730  df-gim 14772  df-ga 14793  df-cntz 14842  df-oppg 14868  df-od 14893  df-gex 14894  df-pgp 14895  df-lsm 14996  df-pj1 14997  df-cmn 15140  df-abl 15141  df-cyg 15214  df-dprd 15282  df-dpj 15283  df-mgp 15375  df-rng 15389  df-cring 15390  df-ur 15391  df-oppr 15454  df-dvdsr 15472  df-unit 15473  df-invr 15503  df-rnghom 15545  df-subrg 15592  df-lmod 15678  df-lss 15739  df-lsp 15778  df-sra 15974  df-rgmod 15975  df-lidl 15976  df-rsp 15977  df-2idl 16033  df-xmet 16425  df-met 16426  df-bl 16427  df-mopn 16428  df-fbas 16429  df-fg 16430  df-cnfld 16433  df-zrh 16511  df-zn 16514  df-top 16692  df-bases 16694  df-topon 16695  df-topsp 16696  df-cld 16812  df-ntr 16813  df-cls 16814  df-nei 16891  df-lp 16924  df-perf 16925  df-cn 17013  df-cnp 17014  df-haus 17099  df-tx 17313  df-hmeo 17502  df-fil 17593  df-fm 17685  df-flim 17686  df-flf 17687  df-xms 17937  df-ms 17938  df-tms 17939  df-cncf 18434  df-limc 19269  df-dv 19270  df-log 19967  df-cxp 19968  df-dchr 20525
  Copyright terms: Public domain W3C validator