MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrpt Structured version   Unicode version

Theorem dchrpt 21053
Description: For any element other than 1, there is a Dirichlet character that is not one at the given element. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrpt.g  |-  G  =  (DChr `  N )
dchrpt.z  |-  Z  =  (ℤ/n `  N )
dchrpt.d  |-  D  =  ( Base `  G
)
dchrpt.b  |-  B  =  ( Base `  Z
)
dchrpt.1  |-  .1.  =  ( 1r `  Z )
dchrpt.n  |-  ( ph  ->  N  e.  NN )
dchrpt.n1  |-  ( ph  ->  A  =/=  .1.  )
dchrpt.a  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
dchrpt  |-  ( ph  ->  E. x  e.  D  ( x `  A
)  =/=  1 )
Distinct variable groups:    x,  .1.    x, A    x, B    x, G    x, N    x, Z    x, D    ph, x

Proof of Theorem dchrpt
Dummy variables  a 
b  k  n  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2438 . . . . 5  |-  (Unit `  Z )  =  (Unit `  Z )
2 eqid 2438 . . . . 5  |-  ( (mulGrp `  Z )s  (Unit `  Z )
)  =  ( (mulGrp `  Z )s  (Unit `  Z )
)
31, 2unitgrpbas 15773 . . . 4  |-  (Unit `  Z )  =  (
Base `  ( (mulGrp `  Z )s  (Unit `  Z )
) )
4 eqid 2438 . . . 4  |-  { u  e.  (SubGrp `  ( (mulGrp `  Z )s  (Unit `  Z )
) )  |  ( ( (mulGrp `  Z
)s  (Unit `  Z )
)s  u )  e.  (CycGrp 
i^i  ran pGrp  ) }  =  { u  e.  (SubGrp `  ( (mulGrp `  Z
)s  (Unit `  Z )
) )  |  ( ( (mulGrp `  Z
)s  (Unit `  Z )
)s  u )  e.  (CycGrp 
i^i  ran pGrp  ) }
5 dchrpt.n . . . . . . 7  |-  ( ph  ->  N  e.  NN )
65nnnn0d 10276 . . . . . 6  |-  ( ph  ->  N  e.  NN0 )
7 dchrpt.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
87zncrng 16827 . . . . . 6  |-  ( N  e.  NN0  ->  Z  e. 
CRing )
91, 2unitabl 15775 . . . . . 6  |-  ( Z  e.  CRing  ->  ( (mulGrp `  Z )s  (Unit `  Z )
)  e.  Abel )
106, 8, 93syl 19 . . . . 5  |-  ( ph  ->  ( (mulGrp `  Z
)s  (Unit `  Z )
)  e.  Abel )
1110adantr 453 . . . 4  |-  ( (
ph  /\  A  e.  (Unit `  Z ) )  ->  ( (mulGrp `  Z )s  (Unit `  Z )
)  e.  Abel )
12 dchrpt.b . . . . . . . 8  |-  B  =  ( Base `  Z
)
137, 12znfi 16842 . . . . . . 7  |-  ( N  e.  NN  ->  B  e.  Fin )
145, 13syl 16 . . . . . 6  |-  ( ph  ->  B  e.  Fin )
1512, 1unitss 15767 . . . . . 6  |-  (Unit `  Z )  C_  B
16 ssfi 7331 . . . . . 6  |-  ( ( B  e.  Fin  /\  (Unit `  Z )  C_  B )  ->  (Unit `  Z )  e.  Fin )
1714, 15, 16sylancl 645 . . . . 5  |-  ( ph  ->  (Unit `  Z )  e.  Fin )
1817adantr 453 . . . 4  |-  ( (
ph  /\  A  e.  (Unit `  Z ) )  ->  (Unit `  Z
)  e.  Fin )
19 eqid 2438 . . . 4  |-  (.g `  (
(mulGrp `  Z )s  (Unit `  Z ) ) )  =  (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) )
20 eqid 2438 . . . 4  |-  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  (
(mulGrp `  Z )s  (Unit `  Z ) ) ) ( w `  k
) ) ) )  =  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) )
213, 4, 11, 18, 19, 20ablfac2 15649 . . 3  |-  ( (
ph  /\  A  e.  (Unit `  Z ) )  ->  E. w  e. Word  (Unit `  Z ) ( ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) : dom  w
--> { u  e.  (SubGrp `  ( (mulGrp `  Z
)s  (Unit `  Z )
) )  |  ( ( (mulGrp `  Z
)s  (Unit `  Z )
)s  u )  e.  (CycGrp 
i^i  ran pGrp  ) }  /\  ( (mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )
22 dchrpt.g . . . . . . 7  |-  G  =  (DChr `  N )
23 dchrpt.d . . . . . . 7  |-  D  =  ( Base `  G
)
24 dchrpt.1 . . . . . . 7  |-  .1.  =  ( 1r `  Z )
255ad3antrrr 712 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  N  e.  NN )
26 dchrpt.n1 . . . . . . . 8  |-  ( ph  ->  A  =/=  .1.  )
2726ad3antrrr 712 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  A  =/=  .1.  )
28 oveq1 6090 . . . . . . . . . . 11  |-  ( n  =  b  ->  (
n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) )  =  ( b (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) )
2928cbvmptv 4302 . . . . . . . . . 10  |-  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) )  =  ( b  e.  ZZ  |->  ( b (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) )
30 fveq2 5730 . . . . . . . . . . . 12  |-  ( k  =  a  ->  (
w `  k )  =  ( w `  a ) )
3130oveq2d 6099 . . . . . . . . . . 11  |-  ( k  =  a  ->  (
b (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) )  =  ( b (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 a ) ) )
3231mpteq2dv 4298 . . . . . . . . . 10  |-  ( k  =  a  ->  (
b  e.  ZZ  |->  ( b (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) )  =  ( b  e.  ZZ  |->  ( b (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 a ) ) ) )
3329, 32syl5eq 2482 . . . . . . . . 9  |-  ( k  =  a  ->  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) )  =  ( b  e.  ZZ  |->  ( b (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 a ) ) ) )
3433rneqd 5099 . . . . . . . 8  |-  ( k  =  a  ->  ran  ( n  e.  ZZ  |->  ( n (.g `  (
(mulGrp `  Z )s  (Unit `  Z ) ) ) ( w `  k
) ) )  =  ran  ( b  e.  ZZ  |->  ( b (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 a ) ) ) )
3534cbvmptv 4302 . . . . . . 7  |-  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  (
(mulGrp `  Z )s  (Unit `  Z ) ) ) ( w `  k
) ) ) )  =  ( a  e. 
dom  w  |->  ran  (
b  e.  ZZ  |->  ( b (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 a ) ) ) )
36 simpllr 737 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  A  e.  (Unit `  Z )
)
37 simplr 733 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  w  e. Word  (Unit `  Z )
)
38 simprl 734 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )
39 simprr 735 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
)
4022, 7, 23, 12, 24, 25, 27, 1, 2, 19, 35, 36, 37, 38, 39dchrptlem3 21052 . . . . . 6  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  E. x  e.  D  ( x `  A )  =/=  1
)
41403adantr1 1117 . . . . 5  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) : dom  w
--> { u  e.  (SubGrp `  ( (mulGrp `  Z
)s  (Unit `  Z )
) )  |  ( ( (mulGrp `  Z
)s  (Unit `  Z )
)s  u )  e.  (CycGrp 
i^i  ran pGrp  ) }  /\  ( (mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  E. x  e.  D  ( x `  A )  =/=  1
)
4241ex 425 . . . 4  |-  ( ( ( ph  /\  A  e.  (Unit `  Z )
)  /\  w  e. Word  (Unit `  Z ) )  -> 
( ( ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  (
(mulGrp `  Z )s  (Unit `  Z ) ) ) ( w `  k
) ) ) ) : dom  w --> { u  e.  (SubGrp `  ( (mulGrp `  Z )s  (Unit `  Z )
) )  |  ( ( (mulGrp `  Z
)s  (Unit `  Z )
)s  u )  e.  (CycGrp 
i^i  ran pGrp  ) }  /\  ( (mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
)  ->  E. x  e.  D  ( x `  A )  =/=  1
) )
4342rexlimdva 2832 . . 3  |-  ( (
ph  /\  A  e.  (Unit `  Z ) )  ->  ( E. w  e. Word  (Unit `  Z )
( ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) : dom  w
--> { u  e.  (SubGrp `  ( (mulGrp `  Z
)s  (Unit `  Z )
) )  |  ( ( (mulGrp `  Z
)s  (Unit `  Z )
)s  u )  e.  (CycGrp 
i^i  ran pGrp  ) }  /\  ( (mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
)  ->  E. x  e.  D  ( x `  A )  =/=  1
) )
4421, 43mpd 15 . 2  |-  ( (
ph  /\  A  e.  (Unit `  Z ) )  ->  E. x  e.  D  ( x `  A
)  =/=  1 )
4522dchrabl 21040 . . . . 5  |-  ( N  e.  NN  ->  G  e.  Abel )
46 ablgrp 15419 . . . . 5  |-  ( G  e.  Abel  ->  G  e. 
Grp )
47 eqid 2438 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
4823, 47grpidcl 14835 . . . . 5  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  D )
495, 45, 46, 484syl 20 . . . 4  |-  ( ph  ->  ( 0g `  G
)  e.  D )
5049adantr 453 . . 3  |-  ( (
ph  /\  -.  A  e.  (Unit `  Z )
)  ->  ( 0g `  G )  e.  D
)
51 ax-1ne0 9061 . . . . 5  |-  1  =/=  0
5251necomi 2688 . . . 4  |-  0  =/=  1
53 dchrpt.a . . . . . . . 8  |-  ( ph  ->  A  e.  B )
5422, 7, 23, 12, 1, 49, 53dchrn0 21036 . . . . . . 7  |-  ( ph  ->  ( ( ( 0g
`  G ) `  A )  =/=  0  <->  A  e.  (Unit `  Z
) ) )
5554necon1bbid 2660 . . . . . 6  |-  ( ph  ->  ( -.  A  e.  (Unit `  Z )  <->  ( ( 0g `  G
) `  A )  =  0 ) )
5655biimpa 472 . . . . 5  |-  ( (
ph  /\  -.  A  e.  (Unit `  Z )
)  ->  ( ( 0g `  G ) `  A )  =  0 )
5756neeq1d 2616 . . . 4  |-  ( (
ph  /\  -.  A  e.  (Unit `  Z )
)  ->  ( (
( 0g `  G
) `  A )  =/=  1  <->  0  =/=  1
) )
5852, 57mpbiri 226 . . 3  |-  ( (
ph  /\  -.  A  e.  (Unit `  Z )
)  ->  ( ( 0g `  G ) `  A )  =/=  1
)
59 fveq1 5729 . . . . 5  |-  ( x  =  ( 0g `  G )  ->  (
x `  A )  =  ( ( 0g
`  G ) `  A ) )
6059neeq1d 2616 . . . 4  |-  ( x  =  ( 0g `  G )  ->  (
( x `  A
)  =/=  1  <->  (
( 0g `  G
) `  A )  =/=  1 ) )
6160rspcev 3054 . . 3  |-  ( ( ( 0g `  G
)  e.  D  /\  ( ( 0g `  G ) `  A
)  =/=  1 )  ->  E. x  e.  D  ( x `  A
)  =/=  1 )
6250, 58, 61syl2anc 644 . 2  |-  ( (
ph  /\  -.  A  e.  (Unit `  Z )
)  ->  E. x  e.  D  ( x `  A )  =/=  1
)
6344, 62pm2.61dan 768 1  |-  ( ph  ->  E. x  e.  D  ( x `  A
)  =/=  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   E.wrex 2708   {crab 2711    i^i cin 3321    C_ wss 3322   class class class wbr 4214    e. cmpt 4268   dom cdm 4880   ran crn 4881   -->wf 5452   ` cfv 5456  (class class class)co 6083   Fincfn 7111   0cc0 8992   1c1 8993   NNcn 10002   NN0cn0 10223   ZZcz 10284  Word cword 11719   Basecbs 13471   ↾s cress 13472   0gc0g 13725   Grpcgrp 14687  .gcmg 14691  SubGrpcsubg 14940   pGrp cpgp 15167   Abelcabel 15415  CycGrpccyg 15489   DProd cdprd 15556  mulGrpcmgp 15650   CRingccrg 15663   1rcur 15664  Unitcui 15746  ℤ/nczn 16783  DChrcdchr 21018
This theorem is referenced by:  sumdchr2  21056
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070  ax-addf 9071  ax-mulf 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-disj 4185  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-tpos 6481  df-rpss 6524  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-omul 6731  df-er 6907  df-ec 6909  df-qs 6913  df-map 7022  df-pm 7023  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-fi 7418  df-sup 7448  df-oi 7481  df-card 7828  df-acn 7831  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-q 10577  df-rp 10615  df-xneg 10712  df-xadd 10713  df-xmul 10714  df-ioo 10922  df-ioc 10923  df-ico 10924  df-icc 10925  df-fz 11046  df-fzo 11138  df-fl 11204  df-mod 11253  df-seq 11326  df-exp 11385  df-fac 11569  df-bc 11596  df-hash 11621  df-word 11725  df-concat 11726  df-s1 11727  df-shft 11884  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-limsup 12267  df-clim 12284  df-rlim 12285  df-sum 12482  df-ef 12672  df-sin 12674  df-cos 12675  df-pi 12677  df-dvds 12855  df-gcd 13009  df-prm 13082  df-pc 13213  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-starv 13546  df-sca 13547  df-vsca 13548  df-tset 13550  df-ple 13551  df-ds 13553  df-unif 13554  df-hom 13555  df-cco 13556  df-rest 13652  df-topn 13653  df-topgen 13669  df-pt 13670  df-prds 13673  df-xrs 13728  df-0g 13729  df-gsum 13730  df-qtop 13735  df-imas 13736  df-divs 13737  df-xps 13738  df-mre 13813  df-mrc 13814  df-acs 13816  df-mnd 14692  df-mhm 14740  df-submnd 14741  df-grp 14814  df-minusg 14815  df-sbg 14816  df-mulg 14817  df-subg 14943  df-nsg 14944  df-eqg 14945  df-ghm 15006  df-gim 15048  df-ga 15069  df-cntz 15118  df-oppg 15144  df-od 15169  df-gex 15170  df-pgp 15171  df-lsm 15272  df-pj1 15273  df-cmn 15416  df-abl 15417  df-cyg 15490  df-dprd 15558  df-dpj 15559  df-mgp 15651  df-rng 15665  df-cring 15666  df-ur 15667  df-oppr 15730  df-dvdsr 15748  df-unit 15749  df-invr 15779  df-rnghom 15821  df-subrg 15868  df-lmod 15954  df-lss 16011  df-lsp 16050  df-sra 16246  df-rgmod 16247  df-lidl 16248  df-rsp 16249  df-2idl 16305  df-psmet 16696  df-xmet 16697  df-met 16698  df-bl 16699  df-mopn 16700  df-fbas 16701  df-fg 16702  df-cnfld 16706  df-zrh 16784  df-zn 16787  df-top 16965  df-bases 16967  df-topon 16968  df-topsp 16969  df-cld 17085  df-ntr 17086  df-cls 17087  df-nei 17164  df-lp 17202  df-perf 17203  df-cn 17293  df-cnp 17294  df-haus 17381  df-tx 17596  df-hmeo 17789  df-fil 17880  df-fm 17972  df-flim 17973  df-flf 17974  df-xms 18352  df-ms 18353  df-tms 18354  df-cncf 18910  df-limc 19755  df-dv 19756  df-log 20456  df-cxp 20457  df-dchr 21019
  Copyright terms: Public domain W3C validator