MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrpt Unicode version

Theorem dchrpt 20506
Description: For any element other than 1, there is a Dirichlet character that is not one at the given element. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrpt.g  |-  G  =  (DChr `  N )
dchrpt.z  |-  Z  =  (ℤ/n `  N )
dchrpt.d  |-  D  =  ( Base `  G
)
dchrpt.b  |-  B  =  ( Base `  Z
)
dchrpt.1  |-  .1.  =  ( 1r `  Z )
dchrpt.n  |-  ( ph  ->  N  e.  NN )
dchrpt.n1  |-  ( ph  ->  A  =/=  .1.  )
dchrpt.a  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
dchrpt  |-  ( ph  ->  E. x  e.  D  ( x `  A
)  =/=  1 )
Distinct variable groups:    x,  .1.    x, A    x, B    x, G    x, N    x, Z    x, D    ph, x

Proof of Theorem dchrpt
Dummy variables  a 
b  k  n  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . . . 5  |-  (Unit `  Z )  =  (Unit `  Z )
2 eqid 2283 . . . . 5  |-  ( (mulGrp `  Z )s  (Unit `  Z )
)  =  ( (mulGrp `  Z )s  (Unit `  Z )
)
31, 2unitgrpbas 15448 . . . 4  |-  (Unit `  Z )  =  (
Base `  ( (mulGrp `  Z )s  (Unit `  Z )
) )
4 eqid 2283 . . . 4  |-  { u  e.  (SubGrp `  ( (mulGrp `  Z )s  (Unit `  Z )
) )  |  ( ( (mulGrp `  Z
)s  (Unit `  Z )
)s  u )  e.  (CycGrp 
i^i  ran pGrp  ) }  =  { u  e.  (SubGrp `  ( (mulGrp `  Z
)s  (Unit `  Z )
) )  |  ( ( (mulGrp `  Z
)s  (Unit `  Z )
)s  u )  e.  (CycGrp 
i^i  ran pGrp  ) }
5 dchrpt.n . . . . . . 7  |-  ( ph  ->  N  e.  NN )
65nnnn0d 10018 . . . . . 6  |-  ( ph  ->  N  e.  NN0 )
7 dchrpt.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
87zncrng 16498 . . . . . 6  |-  ( N  e.  NN0  ->  Z  e. 
CRing )
91, 2unitabl 15450 . . . . . 6  |-  ( Z  e.  CRing  ->  ( (mulGrp `  Z )s  (Unit `  Z )
)  e.  Abel )
106, 8, 93syl 18 . . . . 5  |-  ( ph  ->  ( (mulGrp `  Z
)s  (Unit `  Z )
)  e.  Abel )
1110adantr 451 . . . 4  |-  ( (
ph  /\  A  e.  (Unit `  Z ) )  ->  ( (mulGrp `  Z )s  (Unit `  Z )
)  e.  Abel )
12 dchrpt.b . . . . . . . 8  |-  B  =  ( Base `  Z
)
137, 12znfi 16513 . . . . . . 7  |-  ( N  e.  NN  ->  B  e.  Fin )
145, 13syl 15 . . . . . 6  |-  ( ph  ->  B  e.  Fin )
1512, 1unitss 15442 . . . . . 6  |-  (Unit `  Z )  C_  B
16 ssfi 7083 . . . . . 6  |-  ( ( B  e.  Fin  /\  (Unit `  Z )  C_  B )  ->  (Unit `  Z )  e.  Fin )
1714, 15, 16sylancl 643 . . . . 5  |-  ( ph  ->  (Unit `  Z )  e.  Fin )
1817adantr 451 . . . 4  |-  ( (
ph  /\  A  e.  (Unit `  Z ) )  ->  (Unit `  Z
)  e.  Fin )
19 eqid 2283 . . . 4  |-  (.g `  (
(mulGrp `  Z )s  (Unit `  Z ) ) )  =  (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) )
20 eqid 2283 . . . 4  |-  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  (
(mulGrp `  Z )s  (Unit `  Z ) ) ) ( w `  k
) ) ) )  =  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) )
213, 4, 11, 18, 19, 20ablfac2 15324 . . 3  |-  ( (
ph  /\  A  e.  (Unit `  Z ) )  ->  E. w  e. Word  (Unit `  Z ) ( ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) : dom  w
--> { u  e.  (SubGrp `  ( (mulGrp `  Z
)s  (Unit `  Z )
) )  |  ( ( (mulGrp `  Z
)s  (Unit `  Z )
)s  u )  e.  (CycGrp 
i^i  ran pGrp  ) }  /\  ( (mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )
22 dchrpt.g . . . . . . 7  |-  G  =  (DChr `  N )
23 dchrpt.d . . . . . . 7  |-  D  =  ( Base `  G
)
24 dchrpt.1 . . . . . . 7  |-  .1.  =  ( 1r `  Z )
255ad3antrrr 710 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  N  e.  NN )
26 dchrpt.n1 . . . . . . . 8  |-  ( ph  ->  A  =/=  .1.  )
2726ad3antrrr 710 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  A  =/=  .1.  )
28 oveq1 5865 . . . . . . . . . . 11  |-  ( n  =  b  ->  (
n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) )  =  ( b (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) )
2928cbvmptv 4111 . . . . . . . . . 10  |-  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) )  =  ( b  e.  ZZ  |->  ( b (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) )
30 fveq2 5525 . . . . . . . . . . . 12  |-  ( k  =  a  ->  (
w `  k )  =  ( w `  a ) )
3130oveq2d 5874 . . . . . . . . . . 11  |-  ( k  =  a  ->  (
b (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) )  =  ( b (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 a ) ) )
3231mpteq2dv 4107 . . . . . . . . . 10  |-  ( k  =  a  ->  (
b  e.  ZZ  |->  ( b (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) )  =  ( b  e.  ZZ  |->  ( b (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 a ) ) ) )
3329, 32syl5eq 2327 . . . . . . . . 9  |-  ( k  =  a  ->  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) )  =  ( b  e.  ZZ  |->  ( b (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 a ) ) ) )
3433rneqd 4906 . . . . . . . 8  |-  ( k  =  a  ->  ran  ( n  e.  ZZ  |->  ( n (.g `  (
(mulGrp `  Z )s  (Unit `  Z ) ) ) ( w `  k
) ) )  =  ran  ( b  e.  ZZ  |->  ( b (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 a ) ) ) )
3534cbvmptv 4111 . . . . . . 7  |-  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  (
(mulGrp `  Z )s  (Unit `  Z ) ) ) ( w `  k
) ) ) )  =  ( a  e. 
dom  w  |->  ran  (
b  e.  ZZ  |->  ( b (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 a ) ) ) )
36 simpllr 735 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  A  e.  (Unit `  Z )
)
37 simplr 731 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  w  e. Word  (Unit `  Z )
)
38 simprl 732 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )
39 simprr 733 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
)
4022, 7, 23, 12, 24, 25, 27, 1, 2, 19, 35, 36, 37, 38, 39dchrptlem3 20505 . . . . . 6  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
(mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  E. x  e.  D  ( x `  A )  =/=  1
)
41403adantr1 1114 . . . . 5  |-  ( ( ( ( ph  /\  A  e.  (Unit `  Z
) )  /\  w  e. Word  (Unit `  Z )
)  /\  ( (
k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) : dom  w
--> { u  e.  (SubGrp `  ( (mulGrp `  Z
)s  (Unit `  Z )
) )  |  ( ( (mulGrp `  Z
)s  (Unit `  Z )
)s  u )  e.  (CycGrp 
i^i  ran pGrp  ) }  /\  ( (mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
) )  ->  E. x  e.  D  ( x `  A )  =/=  1
)
4241ex 423 . . . 4  |-  ( ( ( ph  /\  A  e.  (Unit `  Z )
)  /\  w  e. Word  (Unit `  Z ) )  -> 
( ( ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  (
(mulGrp `  Z )s  (Unit `  Z ) ) ) ( w `  k
) ) ) ) : dom  w --> { u  e.  (SubGrp `  ( (mulGrp `  Z )s  (Unit `  Z )
) )  |  ( ( (mulGrp `  Z
)s  (Unit `  Z )
)s  u )  e.  (CycGrp 
i^i  ran pGrp  ) }  /\  ( (mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
)  ->  E. x  e.  D  ( x `  A )  =/=  1
) )
4342rexlimdva 2667 . . 3  |-  ( (
ph  /\  A  e.  (Unit `  Z ) )  ->  ( E. w  e. Word  (Unit `  Z )
( ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) : dom  w
--> { u  e.  (SubGrp `  ( (mulGrp `  Z
)s  (Unit `  Z )
) )  |  ( ( (mulGrp `  Z
)s  (Unit `  Z )
)s  u )  e.  (CycGrp 
i^i  ran pGrp  ) }  /\  ( (mulGrp `  Z )s  (Unit `  Z ) ) dom DProd  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z
)s  (Unit `  Z )
) ) ( w `
 k ) ) ) )  /\  (
( (mulGrp `  Z
)s  (Unit `  Z )
) DProd  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n (.g `  ( (mulGrp `  Z )s  (Unit `  Z )
) ) ( w `
 k ) ) ) ) )  =  (Unit `  Z )
)  ->  E. x  e.  D  ( x `  A )  =/=  1
) )
4421, 43mpd 14 . 2  |-  ( (
ph  /\  A  e.  (Unit `  Z ) )  ->  E. x  e.  D  ( x `  A
)  =/=  1 )
4522dchrabl 20493 . . . . . 6  |-  ( N  e.  NN  ->  G  e.  Abel )
46 ablgrp 15094 . . . . . 6  |-  ( G  e.  Abel  ->  G  e. 
Grp )
475, 45, 463syl 18 . . . . 5  |-  ( ph  ->  G  e.  Grp )
48 eqid 2283 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
4923, 48grpidcl 14510 . . . . 5  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  D )
5047, 49syl 15 . . . 4  |-  ( ph  ->  ( 0g `  G
)  e.  D )
5150adantr 451 . . 3  |-  ( (
ph  /\  -.  A  e.  (Unit `  Z )
)  ->  ( 0g `  G )  e.  D
)
52 ax-1ne0 8806 . . . . 5  |-  1  =/=  0
5352necomi 2528 . . . 4  |-  0  =/=  1
54 dchrpt.a . . . . . . . 8  |-  ( ph  ->  A  e.  B )
5522, 7, 23, 12, 1, 50, 54dchrn0 20489 . . . . . . 7  |-  ( ph  ->  ( ( ( 0g
`  G ) `  A )  =/=  0  <->  A  e.  (Unit `  Z
) ) )
5655necon1bbid 2500 . . . . . 6  |-  ( ph  ->  ( -.  A  e.  (Unit `  Z )  <->  ( ( 0g `  G
) `  A )  =  0 ) )
5756biimpa 470 . . . . 5  |-  ( (
ph  /\  -.  A  e.  (Unit `  Z )
)  ->  ( ( 0g `  G ) `  A )  =  0 )
5857neeq1d 2459 . . . 4  |-  ( (
ph  /\  -.  A  e.  (Unit `  Z )
)  ->  ( (
( 0g `  G
) `  A )  =/=  1  <->  0  =/=  1
) )
5953, 58mpbiri 224 . . 3  |-  ( (
ph  /\  -.  A  e.  (Unit `  Z )
)  ->  ( ( 0g `  G ) `  A )  =/=  1
)
60 fveq1 5524 . . . . 5  |-  ( x  =  ( 0g `  G )  ->  (
x `  A )  =  ( ( 0g
`  G ) `  A ) )
6160neeq1d 2459 . . . 4  |-  ( x  =  ( 0g `  G )  ->  (
( x `  A
)  =/=  1  <->  (
( 0g `  G
) `  A )  =/=  1 ) )
6261rspcev 2884 . . 3  |-  ( ( ( 0g `  G
)  e.  D  /\  ( ( 0g `  G ) `  A
)  =/=  1 )  ->  E. x  e.  D  ( x `  A
)  =/=  1 )
6351, 59, 62syl2anc 642 . 2  |-  ( (
ph  /\  -.  A  e.  (Unit `  Z )
)  ->  E. x  e.  D  ( x `  A )  =/=  1
)
6444, 63pm2.61dan 766 1  |-  ( ph  ->  E. x  e.  D  ( x `  A
)  =/=  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   {crab 2547    i^i cin 3151    C_ wss 3152   class class class wbr 4023    e. cmpt 4077   dom cdm 4689   ran crn 4690   -->wf 5251   ` cfv 5255  (class class class)co 5858   Fincfn 6863   0cc0 8737   1c1 8738   NNcn 9746   NN0cn0 9965   ZZcz 10024  Word cword 11403   Basecbs 13148   ↾s cress 13149   0gc0g 13400   Grpcgrp 14362  .gcmg 14366  SubGrpcsubg 14615   pGrp cpgp 14842   Abelcabel 15090  CycGrpccyg 15164   DProd cdprd 15231  mulGrpcmgp 15325   CRingccrg 15338   1rcur 15339  Unitcui 15421  ℤ/nczn 16454  DChrcdchr 20471
This theorem is referenced by:  sumdchr2  20509
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-tpos 6234  df-rpss 6277  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-ec 6662  df-qs 6666  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-word 11409  df-concat 11410  df-s1 11411  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-pi 12354  df-dvds 12532  df-gcd 12686  df-prm 12759  df-pc 12890  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-divs 13412  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-nsg 14619  df-eqg 14620  df-ghm 14681  df-gim 14723  df-ga 14744  df-cntz 14793  df-oppg 14819  df-od 14844  df-gex 14845  df-pgp 14846  df-lsm 14947  df-pj1 14948  df-cmn 15091  df-abl 15092  df-cyg 15165  df-dprd 15233  df-dpj 15234  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-rnghom 15496  df-subrg 15543  df-lmod 15629  df-lss 15690  df-lsp 15729  df-sra 15925  df-rgmod 15926  df-lidl 15927  df-rsp 15928  df-2idl 15984  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-zrh 16455  df-zn 16458  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217  df-log 19914  df-cxp 19915  df-dchr 20472
  Copyright terms: Public domain W3C validator