MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrptlem2 Unicode version

Theorem dchrptlem2 20917
Description: Lemma for dchrpt 20919. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrpt.g  |-  G  =  (DChr `  N )
dchrpt.z  |-  Z  =  (ℤ/n `  N )
dchrpt.d  |-  D  =  ( Base `  G
)
dchrpt.b  |-  B  =  ( Base `  Z
)
dchrpt.1  |-  .1.  =  ( 1r `  Z )
dchrpt.n  |-  ( ph  ->  N  e.  NN )
dchrpt.n1  |-  ( ph  ->  A  =/=  .1.  )
dchrpt.u  |-  U  =  (Unit `  Z )
dchrpt.h  |-  H  =  ( (mulGrp `  Z
)s 
U )
dchrpt.m  |-  .x.  =  (.g
`  H )
dchrpt.s  |-  S  =  ( k  e.  dom  W 
|->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( W `  k ) ) ) )
dchrpt.au  |-  ( ph  ->  A  e.  U )
dchrpt.w  |-  ( ph  ->  W  e. Word  U )
dchrpt.2  |-  ( ph  ->  H dom DProd  S )
dchrpt.3  |-  ( ph  ->  ( H DProd  S )  =  U )
dchrpt.p  |-  P  =  ( HdProj S )
dchrpt.o  |-  O  =  ( od `  H
)
dchrpt.t  |-  T  =  ( -u 1  ^ c  ( 2  / 
( O `  ( W `  I )
) ) )
dchrpt.i  |-  ( ph  ->  I  e.  dom  W
)
dchrpt.4  |-  ( ph  ->  ( ( P `  I ) `  A
)  =/=  .1.  )
dchrpt.5  |-  X  =  ( u  e.  U  |->  ( iota h E. m  e.  ZZ  (
( ( P `  I ) `  u
)  =  ( m 
.x.  ( W `  I ) )  /\  h  =  ( T ^ m ) ) ) )
Assertion
Ref Expression
dchrptlem2  |-  ( ph  ->  E. x  e.  D  ( x `  A
)  =/=  1 )
Distinct variable groups:    h, k, m, n, x,  .1.    u, h, A, k, m, n, x    h, I, k, m, u    x, B   
x, G    h, H, k, m, n, u, x   
x, N    h, W, k, m, n, u, x    .x. , h, k, m, n, u, x    x, X    P, h, m, u    S, h, k, m, n, u, x    h, Z, k, m, n, u, x   
x, D    ph, h, k, m, n, x    T, h, m, u    U, h, m, u, x
Allowed substitution hints:    ph( u)    B( u, h, k, m, n)    D( u, h, k, m, n)    P( x, k, n)    T( x, k, n)    U( k, n)    .1. ( u)    G( u, h, k, m, n)    I( x, n)    N( u, h, k, m, n)    O( x, u, h, k, m, n)    X( u, h, k, m, n)

Proof of Theorem dchrptlem2
Dummy variables  a 
b  v  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrpt.g . . 3  |-  G  =  (DChr `  N )
2 dchrpt.z . . 3  |-  Z  =  (ℤ/n `  N )
3 dchrpt.b . . 3  |-  B  =  ( Base `  Z
)
4 dchrpt.u . . 3  |-  U  =  (Unit `  Z )
5 dchrpt.n . . 3  |-  ( ph  ->  N  e.  NN )
6 dchrpt.d . . 3  |-  D  =  ( Base `  G
)
7 fveq2 5669 . . 3  |-  ( v  =  x  ->  ( X `  v )  =  ( X `  x ) )
8 fveq2 5669 . . 3  |-  ( v  =  y  ->  ( X `  v )  =  ( X `  y ) )
9 fveq2 5669 . . 3  |-  ( v  =  ( x ( .r `  Z ) y )  ->  ( X `  v )  =  ( X `  ( x ( .r
`  Z ) y ) ) )
10 fveq2 5669 . . 3  |-  ( v  =  ( 1r `  Z )  ->  ( X `  v )  =  ( X `  ( 1r `  Z ) ) )
11 dchrpt.2 . . . . . . . . 9  |-  ( ph  ->  H dom DProd  S )
12 zex 10224 . . . . . . . . . . . . 13  |-  ZZ  e.  _V
1312mptex 5906 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  |->  ( n 
.x.  ( W `  k ) ) )  e.  _V
1413rnex 5074 . . . . . . . . . . 11  |-  ran  (
n  e.  ZZ  |->  ( n  .x.  ( W `
 k ) ) )  e.  _V
15 dchrpt.s . . . . . . . . . . 11  |-  S  =  ( k  e.  dom  W 
|->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( W `  k ) ) ) )
1614, 15dmmpti 5515 . . . . . . . . . 10  |-  dom  S  =  dom  W
1716a1i 11 . . . . . . . . 9  |-  ( ph  ->  dom  S  =  dom  W )
18 dchrpt.p . . . . . . . . 9  |-  P  =  ( HdProj S )
19 dchrpt.i . . . . . . . . 9  |-  ( ph  ->  I  e.  dom  W
)
2011, 17, 18, 19dpjf 15543 . . . . . . . 8  |-  ( ph  ->  ( P `  I
) : ( H DProd 
S ) --> ( S `
 I ) )
21 dchrpt.3 . . . . . . . . 9  |-  ( ph  ->  ( H DProd  S )  =  U )
2221feq2d 5522 . . . . . . . 8  |-  ( ph  ->  ( ( P `  I ) : ( H DProd  S ) --> ( S `  I )  <-> 
( P `  I
) : U --> ( S `
 I ) ) )
2320, 22mpbid 202 . . . . . . 7  |-  ( ph  ->  ( P `  I
) : U --> ( S `
 I ) )
2423ffvelrnda 5810 . . . . . 6  |-  ( (
ph  /\  v  e.  U )  ->  (
( P `  I
) `  v )  e.  ( S `  I
) )
2519adantr 452 . . . . . . 7  |-  ( (
ph  /\  v  e.  U )  ->  I  e.  dom  W )
26 oveq1 6028 . . . . . . . . . . 11  |-  ( n  =  a  ->  (
n  .x.  ( W `  k ) )  =  ( a  .x.  ( W `  k )
) )
2726cbvmptv 4242 . . . . . . . . . 10  |-  ( n  e.  ZZ  |->  ( n 
.x.  ( W `  k ) ) )  =  ( a  e.  ZZ  |->  ( a  .x.  ( W `  k ) ) )
28 fveq2 5669 . . . . . . . . . . . 12  |-  ( k  =  I  ->  ( W `  k )  =  ( W `  I ) )
2928oveq2d 6037 . . . . . . . . . . 11  |-  ( k  =  I  ->  (
a  .x.  ( W `  k ) )  =  ( a  .x.  ( W `  I )
) )
3029mpteq2dv 4238 . . . . . . . . . 10  |-  ( k  =  I  ->  (
a  e.  ZZ  |->  ( a  .x.  ( W `
 k ) ) )  =  ( a  e.  ZZ  |->  ( a 
.x.  ( W `  I ) ) ) )
3127, 30syl5eq 2432 . . . . . . . . 9  |-  ( k  =  I  ->  (
n  e.  ZZ  |->  ( n  .x.  ( W `
 k ) ) )  =  ( a  e.  ZZ  |->  ( a 
.x.  ( W `  I ) ) ) )
3231rneqd 5038 . . . . . . . 8  |-  ( k  =  I  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( W `
 k ) ) )  =  ran  (
a  e.  ZZ  |->  ( a  .x.  ( W `
 I ) ) ) )
3332, 15, 14fvmpt3i 5749 . . . . . . 7  |-  ( I  e.  dom  W  -> 
( S `  I
)  =  ran  (
a  e.  ZZ  |->  ( a  .x.  ( W `
 I ) ) ) )
3425, 33syl 16 . . . . . 6  |-  ( (
ph  /\  v  e.  U )  ->  ( S `  I )  =  ran  ( a  e.  ZZ  |->  ( a  .x.  ( W `  I ) ) ) )
3524, 34eleqtrd 2464 . . . . 5  |-  ( (
ph  /\  v  e.  U )  ->  (
( P `  I
) `  v )  e.  ran  ( a  e.  ZZ  |->  ( a  .x.  ( W `  I ) ) ) )
36 eqid 2388 . . . . . 6  |-  ( a  e.  ZZ  |->  ( a 
.x.  ( W `  I ) ) )  =  ( a  e.  ZZ  |->  ( a  .x.  ( W `  I ) ) )
37 ovex 6046 . . . . . 6  |-  ( a 
.x.  ( W `  I ) )  e. 
_V
3836, 37elrnmpti 5062 . . . . 5  |-  ( ( ( P `  I
) `  v )  e.  ran  ( a  e.  ZZ  |->  ( a  .x.  ( W `  I ) ) )  <->  E. a  e.  ZZ  ( ( P `
 I ) `  v )  =  ( a  .x.  ( W `
 I ) ) )
3935, 38sylib 189 . . . 4  |-  ( (
ph  /\  v  e.  U )  ->  E. a  e.  ZZ  ( ( P `
 I ) `  v )  =  ( a  .x.  ( W `
 I ) ) )
40 dchrpt.1 . . . . . 6  |-  .1.  =  ( 1r `  Z )
41 dchrpt.n1 . . . . . 6  |-  ( ph  ->  A  =/=  .1.  )
42 dchrpt.h . . . . . 6  |-  H  =  ( (mulGrp `  Z
)s 
U )
43 dchrpt.m . . . . . 6  |-  .x.  =  (.g
`  H )
44 dchrpt.au . . . . . 6  |-  ( ph  ->  A  e.  U )
45 dchrpt.w . . . . . 6  |-  ( ph  ->  W  e. Word  U )
46 dchrpt.o . . . . . 6  |-  O  =  ( od `  H
)
47 dchrpt.t . . . . . 6  |-  T  =  ( -u 1  ^ c  ( 2  / 
( O `  ( W `  I )
) ) )
48 dchrpt.4 . . . . . 6  |-  ( ph  ->  ( ( P `  I ) `  A
)  =/=  .1.  )
49 dchrpt.5 . . . . . 6  |-  X  =  ( u  e.  U  |->  ( iota h E. m  e.  ZZ  (
( ( P `  I ) `  u
)  =  ( m 
.x.  ( W `  I ) )  /\  h  =  ( T ^ m ) ) ) )
501, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 20916 . . . . 5  |-  ( ( ( ph  /\  v  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  v
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  ( X `  v )  =  ( T ^ a ) )
51 neg1cn 10000 . . . . . . . . 9  |-  -u 1  e.  CC
52 2re 10002 . . . . . . . . . . 11  |-  2  e.  RR
535nnnn0d 10207 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  NN0 )
542zncrng 16749 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  Z  e. 
CRing )
55 crngrng 15602 . . . . . . . . . . . . . 14  |-  ( Z  e.  CRing  ->  Z  e.  Ring )
5653, 54, 553syl 19 . . . . . . . . . . . . 13  |-  ( ph  ->  Z  e.  Ring )
574, 42unitgrp 15700 . . . . . . . . . . . . 13  |-  ( Z  e.  Ring  ->  H  e. 
Grp )
5856, 57syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  H  e.  Grp )
592, 3znfi 16764 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  B  e.  Fin )
605, 59syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  Fin )
613, 4unitss 15693 . . . . . . . . . . . . 13  |-  U  C_  B
62 ssfi 7266 . . . . . . . . . . . . 13  |-  ( ( B  e.  Fin  /\  U  C_  B )  ->  U  e.  Fin )
6360, 61, 62sylancl 644 . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  Fin )
64 wrdf 11661 . . . . . . . . . . . . . 14  |-  ( W  e. Word  U  ->  W : ( 0..^ (
# `  W )
) --> U )
6545, 64syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  W : ( 0..^ ( # `  W
) ) --> U )
66 fdm 5536 . . . . . . . . . . . . . . 15  |-  ( W : ( 0..^ (
# `  W )
) --> U  ->  dom  W  =  ( 0..^ (
# `  W )
) )
6765, 66syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  W  =  ( 0..^ ( # `  W
) ) )
6819, 67eleqtrd 2464 . . . . . . . . . . . . 13  |-  ( ph  ->  I  e.  ( 0..^ ( # `  W
) ) )
6965, 68ffvelrnd 5811 . . . . . . . . . . . 12  |-  ( ph  ->  ( W `  I
)  e.  U )
704, 42unitgrpbas 15699 . . . . . . . . . . . . 13  |-  U  =  ( Base `  H
)
7170, 46odcl2 15129 . . . . . . . . . . . 12  |-  ( ( H  e.  Grp  /\  U  e.  Fin  /\  ( W `  I )  e.  U )  ->  ( O `  ( W `  I ) )  e.  NN )
7258, 63, 69, 71syl3anc 1184 . . . . . . . . . . 11  |-  ( ph  ->  ( O `  ( W `  I )
)  e.  NN )
73 nndivre 9968 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  ( O `  ( W `
 I ) )  e.  NN )  -> 
( 2  /  ( O `  ( W `  I ) ) )  e.  RR )
7452, 72, 73sylancr 645 . . . . . . . . . 10  |-  ( ph  ->  ( 2  /  ( O `  ( W `  I ) ) )  e.  RR )
7574recnd 9048 . . . . . . . . 9  |-  ( ph  ->  ( 2  /  ( O `  ( W `  I ) ) )  e.  CC )
76 cxpcl 20433 . . . . . . . . 9  |-  ( (
-u 1  e.  CC  /\  ( 2  /  ( O `  ( W `  I ) ) )  e.  CC )  -> 
( -u 1  ^ c 
( 2  /  ( O `  ( W `  I ) ) ) )  e.  CC )
7751, 75, 76sylancr 645 . . . . . . . 8  |-  ( ph  ->  ( -u 1  ^ c  ( 2  / 
( O `  ( W `  I )
) ) )  e.  CC )
7847, 77syl5eqel 2472 . . . . . . 7  |-  ( ph  ->  T  e.  CC )
7978ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  v  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  v
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  T  e.  CC )
8051a1i 11 . . . . . . . . 9  |-  ( ph  -> 
-u 1  e.  CC )
81 ax-1cn 8982 . . . . . . . . . . 11  |-  1  e.  CC
82 ax-1ne0 8993 . . . . . . . . . . 11  |-  1  =/=  0
8381, 82negne0i 9308 . . . . . . . . . 10  |-  -u 1  =/=  0
8483a1i 11 . . . . . . . . 9  |-  ( ph  -> 
-u 1  =/=  0
)
8580, 84, 75cxpne0d 20472 . . . . . . . 8  |-  ( ph  ->  ( -u 1  ^ c  ( 2  / 
( O `  ( W `  I )
) ) )  =/=  0 )
8647neeq1i 2561 . . . . . . . 8  |-  ( T  =/=  0  <->  ( -u 1  ^ c  ( 2  /  ( O `  ( W `  I ) ) ) )  =/=  0 )
8785, 86sylibr 204 . . . . . . 7  |-  ( ph  ->  T  =/=  0 )
8887ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  v  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  v
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  T  =/=  0 )
89 simprl 733 . . . . . 6  |-  ( ( ( ph  /\  v  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  v
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  a  e.  ZZ )
9079, 88, 89expclzd 11456 . . . . 5  |-  ( ( ( ph  /\  v  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  v
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  ( T ^ a )  e.  CC )
9150, 90eqeltrd 2462 . . . 4  |-  ( ( ( ph  /\  v  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  v
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  ( X `  v )  e.  CC )
9239, 91rexlimddv 2778 . . 3  |-  ( (
ph  /\  v  e.  U )  ->  ( X `  v )  e.  CC )
93 simprl 733 . . . . 5  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  ->  x  e.  U )
9439ralrimiva 2733 . . . . . 6  |-  ( ph  ->  A. v  e.  U  E. a  e.  ZZ  ( ( P `  I ) `  v
)  =  ( a 
.x.  ( W `  I ) ) )
9594adantr 452 . . . . 5  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  ->  A. v  e.  U  E. a  e.  ZZ  ( ( P `  I ) `  v
)  =  ( a 
.x.  ( W `  I ) ) )
96 fveq2 5669 . . . . . . . 8  |-  ( v  =  x  ->  (
( P `  I
) `  v )  =  ( ( P `
 I ) `  x ) )
9796eqeq1d 2396 . . . . . . 7  |-  ( v  =  x  ->  (
( ( P `  I ) `  v
)  =  ( a 
.x.  ( W `  I ) )  <->  ( ( P `  I ) `  x )  =  ( a  .x.  ( W `
 I ) ) ) )
9897rexbidv 2671 . . . . . 6  |-  ( v  =  x  ->  ( E. a  e.  ZZ  ( ( P `  I ) `  v
)  =  ( a 
.x.  ( W `  I ) )  <->  E. a  e.  ZZ  ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) ) ) )
9998rspcv 2992 . . . . 5  |-  ( x  e.  U  ->  ( A. v  e.  U  E. a  e.  ZZ  ( ( P `  I ) `  v
)  =  ( a 
.x.  ( W `  I ) )  ->  E. a  e.  ZZ  ( ( P `  I ) `  x
)  =  ( a 
.x.  ( W `  I ) ) ) )
10093, 95, 99sylc 58 . . . 4  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  ->  E. a  e.  ZZ  ( ( P `  I ) `  x
)  =  ( a 
.x.  ( W `  I ) ) )
101 simprr 734 . . . . 5  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
y  e.  U )
102 fveq2 5669 . . . . . . . . 9  |-  ( v  =  y  ->  (
( P `  I
) `  v )  =  ( ( P `
 I ) `  y ) )
103102eqeq1d 2396 . . . . . . . 8  |-  ( v  =  y  ->  (
( ( P `  I ) `  v
)  =  ( a 
.x.  ( W `  I ) )  <->  ( ( P `  I ) `  y )  =  ( a  .x.  ( W `
 I ) ) ) )
104103rexbidv 2671 . . . . . . 7  |-  ( v  =  y  ->  ( E. a  e.  ZZ  ( ( P `  I ) `  v
)  =  ( a 
.x.  ( W `  I ) )  <->  E. a  e.  ZZ  ( ( P `
 I ) `  y )  =  ( a  .x.  ( W `
 I ) ) ) )
105 oveq1 6028 . . . . . . . . 9  |-  ( a  =  b  ->  (
a  .x.  ( W `  I ) )  =  ( b  .x.  ( W `  I )
) )
106105eqeq2d 2399 . . . . . . . 8  |-  ( a  =  b  ->  (
( ( P `  I ) `  y
)  =  ( a 
.x.  ( W `  I ) )  <->  ( ( P `  I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) )
107106cbvrexv 2877 . . . . . . 7  |-  ( E. a  e.  ZZ  (
( P `  I
) `  y )  =  ( a  .x.  ( W `  I ) )  <->  E. b  e.  ZZ  ( ( P `  I ) `  y
)  =  ( b 
.x.  ( W `  I ) ) )
108104, 107syl6bb 253 . . . . . 6  |-  ( v  =  y  ->  ( E. a  e.  ZZ  ( ( P `  I ) `  v
)  =  ( a 
.x.  ( W `  I ) )  <->  E. b  e.  ZZ  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) )
109108rspcv 2992 . . . . 5  |-  ( y  e.  U  ->  ( A. v  e.  U  E. a  e.  ZZ  ( ( P `  I ) `  v
)  =  ( a 
.x.  ( W `  I ) )  ->  E. b  e.  ZZ  ( ( P `  I ) `  y
)  =  ( b 
.x.  ( W `  I ) ) ) )
110101, 95, 109sylc 58 . . . 4  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  ->  E. b  e.  ZZ  ( ( P `  I ) `  y
)  =  ( b 
.x.  ( W `  I ) ) )
111 reeanv 2819 . . . . 5  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( ( P `  I ) `  x
)  =  ( a 
.x.  ( W `  I ) )  /\  ( ( P `  I ) `  y
)  =  ( b 
.x.  ( W `  I ) ) )  <-> 
( E. a  e.  ZZ  ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  E. b  e.  ZZ  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) )
11278ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  ->  T  e.  CC )
11387ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  ->  T  =/=  0 )
114 simprll 739 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  -> 
a  e.  ZZ )
115 simprlr 740 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  -> 
b  e.  ZZ )
116 expaddz 11352 . . . . . . . . 9  |-  ( ( ( T  e.  CC  /\  T  =/=  0 )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( T ^ (
a  +  b ) )  =  ( ( T ^ a )  x.  ( T ^
b ) ) )
117112, 113, 114, 115, 116syl22anc 1185 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  -> 
( T ^ (
a  +  b ) )  =  ( ( T ^ a )  x.  ( T ^
b ) ) )
118 simpll 731 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  ->  ph )
11956ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  ->  Z  e.  Ring )
12093adantr 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  ->  x  e.  U )
121101adantr 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  -> 
y  e.  U )
122 eqid 2388 . . . . . . . . . . 11  |-  ( .r
`  Z )  =  ( .r `  Z
)
1234, 122unitmulcl 15697 . . . . . . . . . 10  |-  ( ( Z  e.  Ring  /\  x  e.  U  /\  y  e.  U )  ->  (
x ( .r `  Z ) y )  e.  U )
124119, 120, 121, 123syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  -> 
( x ( .r
`  Z ) y )  e.  U )
125114, 115zaddcld 10312 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  -> 
( a  +  b )  e.  ZZ )
126 simprrl 741 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  -> 
( ( P `  I ) `  x
)  =  ( a 
.x.  ( W `  I ) ) )
127 simprrr 742 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  -> 
( ( P `  I ) `  y
)  =  ( b 
.x.  ( W `  I ) ) )
128126, 127oveq12d 6039 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  -> 
( ( ( P `
 I ) `  x ) ( .r
`  Z ) ( ( P `  I
) `  y )
)  =  ( ( a  .x.  ( W `
 I ) ) ( .r `  Z
) ( b  .x.  ( W `  I ) ) ) )
12911, 17, 18, 19dpjghm 15549 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P `  I
)  e.  ( ( Hs  ( H DProd  S ) )  GrpHom  H ) )
13021oveq2d 6037 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Hs  ( H DProd  S
) )  =  ( Hs  U ) )
131 ovex 6046 . . . . . . . . . . . . . . . . 17  |-  ( (mulGrp `  Z )s  U )  e.  _V
13242, 131eqeltri 2458 . . . . . . . . . . . . . . . 16  |-  H  e. 
_V
13370ressid 13452 . . . . . . . . . . . . . . . 16  |-  ( H  e.  _V  ->  ( Hs  U )  =  H )
134132, 133ax-mp 8 . . . . . . . . . . . . . . 15  |-  ( Hs  U )  =  H
135130, 134syl6eq 2436 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Hs  ( H DProd  S
) )  =  H )
136135oveq1d 6036 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Hs  ( H DProd 
S ) )  GrpHom  H )  =  ( H 
GrpHom  H ) )
137129, 136eleqtrd 2464 . . . . . . . . . . . 12  |-  ( ph  ->  ( P `  I
)  e.  ( H 
GrpHom  H ) )
138137ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  -> 
( P `  I
)  e.  ( H 
GrpHom  H ) )
139 fvex 5683 . . . . . . . . . . . . . 14  |-  (Unit `  Z )  e.  _V
1404, 139eqeltri 2458 . . . . . . . . . . . . 13  |-  U  e. 
_V
141 eqid 2388 . . . . . . . . . . . . . . 15  |-  (mulGrp `  Z )  =  (mulGrp `  Z )
142141, 122mgpplusg 15580 . . . . . . . . . . . . . 14  |-  ( .r
`  Z )  =  ( +g  `  (mulGrp `  Z ) )
14342, 142ressplusg 13499 . . . . . . . . . . . . 13  |-  ( U  e.  _V  ->  ( .r `  Z )  =  ( +g  `  H
) )
144140, 143ax-mp 8 . . . . . . . . . . . 12  |-  ( .r
`  Z )  =  ( +g  `  H
)
14570, 144, 144ghmlin 14939 . . . . . . . . . . 11  |-  ( ( ( P `  I
)  e.  ( H 
GrpHom  H )  /\  x  e.  U  /\  y  e.  U )  ->  (
( P `  I
) `  ( x
( .r `  Z
) y ) )  =  ( ( ( P `  I ) `
 x ) ( .r `  Z ) ( ( P `  I ) `  y
) ) )
146138, 120, 121, 145syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  -> 
( ( P `  I ) `  (
x ( .r `  Z ) y ) )  =  ( ( ( P `  I
) `  x )
( .r `  Z
) ( ( P `
 I ) `  y ) ) )
14758ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  ->  H  e.  Grp )
14869ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  -> 
( W `  I
)  e.  U )
14970, 43, 144mulgdir 14843 . . . . . . . . . . 11  |-  ( ( H  e.  Grp  /\  ( a  e.  ZZ  /\  b  e.  ZZ  /\  ( W `  I )  e.  U ) )  ->  ( ( a  +  b )  .x.  ( W `  I ) )  =  ( ( a  .x.  ( W `
 I ) ) ( .r `  Z
) ( b  .x.  ( W `  I ) ) ) )
150147, 114, 115, 148, 149syl13anc 1186 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  -> 
( ( a  +  b )  .x.  ( W `  I )
)  =  ( ( a  .x.  ( W `
 I ) ) ( .r `  Z
) ( b  .x.  ( W `  I ) ) ) )
151128, 146, 1503eqtr4d 2430 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  -> 
( ( P `  I ) `  (
x ( .r `  Z ) y ) )  =  ( ( a  +  b ) 
.x.  ( W `  I ) ) )
1521, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 20916 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x ( .r `  Z ) y )  e.  U )  /\  ( ( a  +  b )  e.  ZZ  /\  ( ( P `  I ) `  (
x ( .r `  Z ) y ) )  =  ( ( a  +  b ) 
.x.  ( W `  I ) ) ) )  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( T ^ ( a  +  b ) ) )
153118, 124, 125, 151, 152syl22anc 1185 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  -> 
( X `  (
x ( .r `  Z ) y ) )  =  ( T ^ ( a  +  b ) ) )
1541, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 20916 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  x
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  ( X `  x )  =  ( T ^ a ) )
155118, 120, 114, 126, 154syl22anc 1185 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  -> 
( X `  x
)  =  ( T ^ a ) )
1561, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 20916 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  U )  /\  (
b  e.  ZZ  /\  ( ( P `  I ) `  y
)  =  ( b 
.x.  ( W `  I ) ) ) )  ->  ( X `  y )  =  ( T ^ b ) )
157118, 121, 115, 127, 156syl22anc 1185 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  -> 
( X `  y
)  =  ( T ^ b ) )
158155, 157oveq12d 6039 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  -> 
( ( X `  x )  x.  ( X `  y )
)  =  ( ( T ^ a )  x.  ( T ^
b ) ) )
159117, 153, 1583eqtr4d 2430 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) ) ) )  -> 
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) )
160159expr 599 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  U  /\  y  e.  U )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( ( P `  I ) `
 x )  =  ( a  .x.  ( W `  I )
)  /\  ( ( P `  I ) `  y )  =  ( b  .x.  ( W `
 I ) ) )  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) ) )
161160rexlimdvva 2781 . . . . 5  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
( E. a  e.  ZZ  E. b  e.  ZZ  ( ( ( P `  I ) `
 x )  =  ( a  .x.  ( W `  I )
)  /\  ( ( P `  I ) `  y )  =  ( b  .x.  ( W `
 I ) ) )  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) ) )
162111, 161syl5bir 210 . . . 4  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
( ( E. a  e.  ZZ  ( ( P `
 I ) `  x )  =  ( a  .x.  ( W `
 I ) )  /\  E. b  e.  ZZ  ( ( P `
 I ) `  y )  =  ( b  .x.  ( W `
 I ) ) )  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) ) )
163100, 110, 162mp2and 661 . . 3  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) )
164 id 20 . . . . 5  |-  ( ph  ->  ph )
165 eqid 2388 . . . . . . 7  |-  ( 1r
`  Z )  =  ( 1r `  Z
)
1664, 1651unit 15691 . . . . . 6  |-  ( Z  e.  Ring  ->  ( 1r
`  Z )  e.  U )
16756, 166syl 16 . . . . 5  |-  ( ph  ->  ( 1r `  Z
)  e.  U )
168 0z 10226 . . . . . 6  |-  0  e.  ZZ
169168a1i 11 . . . . 5  |-  ( ph  ->  0  e.  ZZ )
170 eqid 2388 . . . . . . . 8  |-  ( 0g
`  H )  =  ( 0g `  H
)
171170, 170ghmid 14940 . . . . . . 7  |-  ( ( P `  I )  e.  ( H  GrpHom  H )  ->  ( ( P `  I ) `  ( 0g `  H
) )  =  ( 0g `  H ) )
172137, 171syl 16 . . . . . 6  |-  ( ph  ->  ( ( P `  I ) `  ( 0g `  H ) )  =  ( 0g `  H ) )
1734, 42, 165unitgrpid 15702 . . . . . . . 8  |-  ( Z  e.  Ring  ->  ( 1r
`  Z )  =  ( 0g `  H
) )
17456, 173syl 16 . . . . . . 7  |-  ( ph  ->  ( 1r `  Z
)  =  ( 0g
`  H ) )
175174fveq2d 5673 . . . . . 6  |-  ( ph  ->  ( ( P `  I ) `  ( 1r `  Z ) )  =  ( ( P `
 I ) `  ( 0g `  H ) ) )
17670, 170, 43mulg0 14823 . . . . . . 7  |-  ( ( W `  I )  e.  U  ->  (
0  .x.  ( W `  I ) )  =  ( 0g `  H
) )
17769, 176syl 16 . . . . . 6  |-  ( ph  ->  ( 0  .x.  ( W `  I )
)  =  ( 0g
`  H ) )
178172, 175, 1773eqtr4d 2430 . . . . 5  |-  ( ph  ->  ( ( P `  I ) `  ( 1r `  Z ) )  =  ( 0  .x.  ( W `  I
) ) )
1791, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 20916 . . . . 5  |-  ( ( ( ph  /\  ( 1r `  Z )  e.  U )  /\  (
0  e.  ZZ  /\  ( ( P `  I ) `  ( 1r `  Z ) )  =  ( 0  .x.  ( W `  I
) ) ) )  ->  ( X `  ( 1r `  Z ) )  =  ( T ^ 0 ) )
180164, 167, 169, 178, 179syl22anc 1185 . . . 4  |-  ( ph  ->  ( X `  ( 1r `  Z ) )  =  ( T ^
0 ) )
18178exp0d 11445 . . . 4  |-  ( ph  ->  ( T ^ 0 )  =  1 )
182180, 181eqtrd 2420 . . 3  |-  ( ph  ->  ( X `  ( 1r `  Z ) )  =  1 )
1831, 2, 3, 4, 5, 6, 7, 8, 9, 10, 92, 163, 182dchrelbasd 20891 . 2  |-  ( ph  ->  ( v  e.  B  |->  if ( v  e.  U ,  ( X `
 v ) ,  0 ) )  e.  D )
18461, 44sseldi 3290 . . . . 5  |-  ( ph  ->  A  e.  B )
185 eleq1 2448 . . . . . . 7  |-  ( v  =  A  ->  (
v  e.  U  <->  A  e.  U ) )
186 fveq2 5669 . . . . . . 7  |-  ( v  =  A  ->  ( X `  v )  =  ( X `  A ) )
187 eqidd 2389 . . . . . . 7  |-  ( v  =  A  ->  0  =  0 )
188185, 186, 187ifbieq12d 3705 . . . . . 6  |-  ( v  =  A  ->  if ( v  e.  U ,  ( X `  v ) ,  0 )  =  if ( A  e.  U , 
( X `  A
) ,  0 ) )
189 eqid 2388 . . . . . 6  |-  ( v  e.  B  |->  if ( v  e.  U , 
( X `  v
) ,  0 ) )  =  ( v  e.  B  |->  if ( v  e.  U , 
( X `  v
) ,  0 ) )
190 fvex 5683 . . . . . . 7  |-  ( X `
 v )  e. 
_V
191 c0ex 9019 . . . . . . 7  |-  0  e.  _V
192190, 191ifex 3741 . . . . . 6  |-  if ( v  e.  U , 
( X `  v
) ,  0 )  e.  _V
193188, 189, 192fvmpt3i 5749 . . . . 5  |-  ( A  e.  B  ->  (
( v  e.  B  |->  if ( v  e.  U ,  ( X `
 v ) ,  0 ) ) `  A )  =  if ( A  e.  U ,  ( X `  A ) ,  0 ) )
194184, 193syl 16 . . . 4  |-  ( ph  ->  ( ( v  e.  B  |->  if ( v  e.  U ,  ( X `  v ) ,  0 ) ) `
 A )  =  if ( A  e.  U ,  ( X `
 A ) ,  0 ) )
195 iftrue 3689 . . . . 5  |-  ( A  e.  U  ->  if ( A  e.  U ,  ( X `  A ) ,  0 )  =  ( X `
 A ) )
19644, 195syl 16 . . . 4  |-  ( ph  ->  if ( A  e.  U ,  ( X `
 A ) ,  0 )  =  ( X `  A ) )
197194, 196eqtrd 2420 . . 3  |-  ( ph  ->  ( ( v  e.  B  |->  if ( v  e.  U ,  ( X `  v ) ,  0 ) ) `
 A )  =  ( X `  A
) )
198 fveq2 5669 . . . . . . . 8  |-  ( v  =  A  ->  (
( P `  I
) `  v )  =  ( ( P `
 I ) `  A ) )
199198eqeq1d 2396 . . . . . . 7  |-  ( v  =  A  ->  (
( ( P `  I ) `  v
)  =  ( a 
.x.  ( W `  I ) )  <->  ( ( P `  I ) `  A )  =  ( a  .x.  ( W `
 I ) ) ) )
200199rexbidv 2671 . . . . . 6  |-  ( v  =  A  ->  ( E. a  e.  ZZ  ( ( P `  I ) `  v
)  =  ( a 
.x.  ( W `  I ) )  <->  E. a  e.  ZZ  ( ( P `
 I ) `  A )  =  ( a  .x.  ( W `
 I ) ) ) )
201200rspcv 2992 . . . . 5  |-  ( A  e.  U  ->  ( A. v  e.  U  E. a  e.  ZZ  ( ( P `  I ) `  v
)  =  ( a 
.x.  ( W `  I ) )  ->  E. a  e.  ZZ  ( ( P `  I ) `  A
)  =  ( a 
.x.  ( W `  I ) ) ) )
20244, 94, 201sylc 58 . . . 4  |-  ( ph  ->  E. a  e.  ZZ  ( ( P `  I ) `  A
)  =  ( a 
.x.  ( W `  I ) ) )
2031, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 20916 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  A
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  ( X `  A )  =  ( T ^ a ) )
20447oveq1i 6031 . . . . . . . 8  |-  ( T ^ a )  =  ( ( -u 1  ^ c  ( 2  /  ( O `  ( W `  I ) ) ) ) ^
a )
205203, 204syl6eq 2436 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  A
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  ( X `  A )  =  ( ( -u 1  ^ c  ( 2  / 
( O `  ( W `  I )
) ) ) ^
a ) )
20648ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  A
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  ( ( P `  I ) `  A )  =/=  .1.  )
20758ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  A
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  H  e.  Grp )
20869ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  A
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  ( W `  I )  e.  U
)
209 simprl 733 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  A
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  a  e.  ZZ )
21070, 46, 43, 170oddvds 15113 . . . . . . . . . . 11  |-  ( ( H  e.  Grp  /\  ( W `  I )  e.  U  /\  a  e.  ZZ )  ->  (
( O `  ( W `  I )
)  ||  a  <->  ( a  .x.  ( W `  I
) )  =  ( 0g `  H ) ) )
211207, 208, 209, 210syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  A
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  ( ( O `  ( W `  I ) )  ||  a 
<->  ( a  .x.  ( W `  I )
)  =  ( 0g
`  H ) ) )
21272ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  A
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  ( O `  ( W `  I
) )  e.  NN )
213 root1eq1 20507 . . . . . . . . . . 11  |-  ( ( ( O `  ( W `  I )
)  e.  NN  /\  a  e.  ZZ )  ->  ( ( ( -u
1  ^ c  ( 2  /  ( O `
 ( W `  I ) ) ) ) ^ a )  =  1  <->  ( O `  ( W `  I
) )  ||  a
) )
214212, 209, 213syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  A
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  ( (
( -u 1  ^ c 
( 2  /  ( O `  ( W `  I ) ) ) ) ^ a )  =  1  <->  ( O `  ( W `  I
) )  ||  a
) )
215 simprr 734 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  A
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  ( ( P `  I ) `  A )  =  ( a  .x.  ( W `
 I ) ) )
21640, 174syl5eq 2432 . . . . . . . . . . . 12  |-  ( ph  ->  .1.  =  ( 0g
`  H ) )
217216ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  A
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  .1.  =  ( 0g `  H ) )
218215, 217eqeq12d 2402 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  A
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  ( (
( P `  I
) `  A )  =  .1.  <->  ( a  .x.  ( W `  I ) )  =  ( 0g
`  H ) ) )
219211, 214, 2183bitr4d 277 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  A
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  ( (
( -u 1  ^ c 
( 2  /  ( O `  ( W `  I ) ) ) ) ^ a )  =  1  <->  ( ( P `  I ) `  A )  =  .1.  ) )
220219necon3bid 2586 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  A
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  ( (
( -u 1  ^ c 
( 2  /  ( O `  ( W `  I ) ) ) ) ^ a )  =/=  1  <->  ( ( P `  I ) `  A )  =/=  .1.  ) )
221206, 220mpbird 224 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  A
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  ( ( -u 1  ^ c  ( 2  /  ( O `
 ( W `  I ) ) ) ) ^ a )  =/=  1 )
222205, 221eqnetrd 2569 . . . . . 6  |-  ( ( ( ph  /\  A  e.  U )  /\  (
a  e.  ZZ  /\  ( ( P `  I ) `  A
)  =  ( a 
.x.  ( W `  I ) ) ) )  ->  ( X `  A )  =/=  1
)
223222rexlimdvaa 2775 . . . . 5  |-  ( (
ph  /\  A  e.  U )  ->  ( E. a  e.  ZZ  ( ( P `  I ) `  A
)  =  ( a 
.x.  ( W `  I ) )  -> 
( X `  A
)  =/=  1 ) )
22444, 223mpdan 650 . . . 4  |-  ( ph  ->  ( E. a  e.  ZZ  ( ( P `
 I ) `  A )  =  ( a  .x.  ( W `
 I ) )  ->  ( X `  A )  =/=  1
) )
225202, 224mpd 15 . . 3  |-  ( ph  ->  ( X `  A
)  =/=  1 )
226197, 225eqnetrd 2569 . 2  |-  ( ph  ->  ( ( v  e.  B  |->  if ( v  e.  U ,  ( X `  v ) ,  0 ) ) `
 A )  =/=  1 )
227 fveq1 5668 . . . 4  |-  ( x  =  ( v  e.  B  |->  if ( v  e.  U ,  ( X `  v ) ,  0 ) )  ->  ( x `  A )  =  ( ( v  e.  B  |->  if ( v  e.  U ,  ( X `
 v ) ,  0 ) ) `  A ) )
228227neeq1d 2564 . . 3  |-  ( x  =  ( v  e.  B  |->  if ( v  e.  U ,  ( X `  v ) ,  0 ) )  ->  ( ( x `
 A )  =/=  1  <->  ( ( v  e.  B  |->  if ( v  e.  U , 
( X `  v
) ,  0 ) ) `  A )  =/=  1 ) )
229228rspcev 2996 . 2  |-  ( ( ( v  e.  B  |->  if ( v  e.  U ,  ( X `
 v ) ,  0 ) )  e.  D  /\  ( ( v  e.  B  |->  if ( v  e.  U ,  ( X `  v ) ,  0 ) ) `  A
)  =/=  1 )  ->  E. x  e.  D  ( x `  A
)  =/=  1 )
230183, 226, 229syl2anc 643 1  |-  ( ph  ->  E. x  e.  D  ( x `  A
)  =/=  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2551   A.wral 2650   E.wrex 2651   _Vcvv 2900    C_ wss 3264   ifcif 3683   class class class wbr 4154    e. cmpt 4208   dom cdm 4819   ran crn 4820   iotacio 5357   -->wf 5391   ` cfv 5395  (class class class)co 6021   Fincfn 7046   CCcc 8922   RRcr 8923   0cc0 8924   1c1 8925    + caddc 8927    x. cmul 8929   -ucneg 9225    / cdiv 9610   NNcn 9933   2c2 9982   NN0cn0 10154   ZZcz 10215  ..^cfzo 11066   ^cexp 11310   #chash 11546  Word cword 11645    || cdivides 12780   Basecbs 13397   ↾s cress 13398   +g cplusg 13457   .rcmulr 13458   0gc0g 13651   Grpcgrp 14613  .gcmg 14617    GrpHom cghm 14931   odcod 15091   DProd cdprd 15482  dProjcdpj 15483  mulGrpcmgp 15576   Ringcrg 15588   CRingccrg 15589   1rcur 15590  Unitcui 15672  ℤ/nczn 16705    ^ c ccxp 20321  DChrcdchr 20884
This theorem is referenced by:  dchrptlem3  20918
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002  ax-addf 9003  ax-mulf 9004
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-1st 6289  df-2nd 6290  df-tpos 6416  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-omul 6666  df-er 6842  df-ec 6844  df-qs 6848  df-map 6957  df-pm 6958  df-ixp 7001  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-fi 7352  df-sup 7382  df-oi 7413  df-card 7760  df-acn 7763  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-5 9994  df-6 9995  df-7 9996  df-8 9997  df-9 9998  df-10 9999  df-n0 10155  df-z 10216  df-dec 10316  df-uz 10422  df-q 10508  df-rp 10546  df-xneg 10643  df-xadd 10644  df-xmul 10645  df-ioo 10853  df-ioc 10854  df-ico 10855  df-icc 10856  df-fz 10977  df-fzo 11067  df-fl 11130  df-mod 11179  df-seq 11252  df-exp 11311  df-fac 11495  df-bc 11522  df-hash 11547  df-word 11651  df-shft 11810  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-limsup 12193  df-clim 12210  df-rlim 12211  df-sum 12408  df-ef 12598  df-sin 12600  df-cos 12601  df-pi 12603  df-dvds 12781  df-struct 13399  df-ndx 13400  df-slot 13401  df-base 13402  df-sets 13403  df-ress 13404  df-plusg 13470  df-mulr 13471  df-starv 13472  df-sca 13473  df-vsca 13474  df-tset 13476  df-ple 13477  df-ds 13479  df-unif 13480  df-hom 13481  df-cco 13482  df-rest 13578  df-topn 13579  df-topgen 13595  df-pt 13596  df-prds 13599  df-xrs 13654  df-0g 13655  df-gsum 13656  df-qtop 13661  df-imas 13662  df-divs 13663  df-xps 13664  df-mre 13739  df-mrc 13740  df-acs 13742  df-mnd 14618  df-mhm 14666  df-submnd 14667  df-grp 14740  df-minusg 14741  df-sbg 14742  df-mulg 14743  df-subg 14869  df-nsg 14870  df-eqg 14871  df-ghm 14932  df-gim 14974  df-cntz 15044  df-oppg 15070  df-od 15095  df-lsm 15198  df-pj1 15199  df-cmn 15342  df-abl 15343  df-dprd 15484  df-dpj 15485  df-mgp 15577  df-rng 15591  df-cring 15592  df-ur 15593  df-oppr 15656  df-dvdsr 15674  df-unit 15675  df-rnghom 15747  df-subrg 15794  df-lmod 15880  df-lss 15937  df-lsp 15976  df-sra 16172  df-rgmod 16173  df-lidl 16174  df-rsp 16175  df-2idl 16231  df-xmet 16620  df-met 16621  df-bl 16622  df-mopn 16623  df-fbas 16624  df-fg 16625  df-cnfld 16628  df-zrh 16706  df-zn 16709  df-top 16887  df-bases 16889  df-topon 16890  df-topsp 16891  df-cld 17007  df-ntr 17008  df-cls 17009  df-nei 17086  df-lp 17124  df-perf 17125  df-cn 17214  df-cnp 17215  df-haus 17302  df-tx 17516  df-hmeo 17709  df-fil 17800  df-fm 17892  df-flim 17893  df-flf 17894  df-xms 18260  df-ms 18261  df-tms 18262  df-cncf 18780  df-limc 19621  df-dv 19622  df-log 20322  df-cxp 20323  df-dchr 20885
  Copyright terms: Public domain W3C validator