MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumiflem2 Unicode version

Theorem dchrvmasumiflem2 20667
Description: Lemma for dchrvmasum 20690. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrvmasumif.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
dchrvmasumif.c  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
dchrvmasumif.s  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  S )
dchrvmasumif.1  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  y
) )
dchrvmasumif.g  |-  K  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  x.  ( ( log `  a )  /  a ) ) )
dchrvmasumif.e  |-  ( ph  ->  E  e.  ( 0 [,)  +oo ) )
dchrvmasumif.t  |-  ( ph  ->  seq  1 (  +  ,  K )  ~~>  T )
dchrvmasumif.2  |-  ( ph  ->  A. y  e.  ( 3 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  K ) `
 ( |_ `  y ) )  -  T ) )  <_ 
( E  x.  (
( log `  y
)  /  y ) ) )
Assertion
Ref Expression
dchrvmasumiflem2  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) ) )  e.  O
( 1 ) )
Distinct variable groups:    x, n, y,  .1.    C, n, x, y   
n, F, x, y   
x, a, y    x, E, y    y, K    n, N, x, y    ph, n, x    T, n, x, y    S, n, x, y    n, Z, x, y    D, n, x, y    n, a, L, x, y    X, a, n, x, y
Allowed substitution hints:    ph( y, a)    C( a)    D( a)    S( a)    T( a)    .1. ( a)    E( n, a)    F( a)    G( x, y, n, a)    K( x, n, a)    N( a)    Z( a)

Proof of Theorem dchrvmasumiflem2
Dummy variables  k 
d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1re 8853 . . 3  |-  1  e.  RR
21a1i 10 . 2  |-  ( ph  ->  1  e.  RR )
3 fzfid 11051 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
4 rpvmasum.g . . . . . . . 8  |-  G  =  (DChr `  N )
5 rpvmasum.z . . . . . . . 8  |-  Z  =  (ℤ/n `  N )
6 rpvmasum.d . . . . . . . 8  |-  D  =  ( Base `  G
)
7 rpvmasum.l . . . . . . . 8  |-  L  =  ( ZRHom `  Z
)
8 dchrisum.b . . . . . . . . 9  |-  ( ph  ->  X  e.  D )
98ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D )
10 elfzelz 10814 . . . . . . . . 9  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  ZZ )
1110adantl 452 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  ZZ )
124, 5, 6, 7, 9, 11dchrzrhcl 20500 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
13 elfznn 10835 . . . . . . . . . . . 12  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
1413adantl 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
15 mucl 20395 . . . . . . . . . . 11  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  ZZ )
1614, 15syl 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  d )  e.  ZZ )
1716zred 10133 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  d )  e.  RR )
1817, 14nndivred 9810 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  d )  /  d )  e.  RR )
1918recnd 8877 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  d )  /  d )  e.  CC )
2012, 19mulcld 8871 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  e.  CC )
213, 20fsumcl 12222 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  e.  CC )
22 dchrvmasumif.s . . . . . . 7  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  S )
23 climcl 11989 . . . . . . 7  |-  (  seq  1 (  +  ,  F )  ~~>  S  ->  S  e.  CC )
2422, 23syl 15 . . . . . 6  |-  ( ph  ->  S  e.  CC )
2524adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  S  e.  CC )
2621, 25mulcld 8871 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  S )  e.  CC )
27 0cn 8847 . . . . . . 7  |-  0  e.  CC
2827a1i 10 . . . . . 6  |-  ( (
ph  /\  S  = 
0 )  ->  0  e.  CC )
29 df-ne 2461 . . . . . . 7  |-  ( S  =/=  0  <->  -.  S  =  0 )
30 dchrvmasumif.t . . . . . . . . . 10  |-  ( ph  ->  seq  1 (  +  ,  K )  ~~>  T )
31 climcl 11989 . . . . . . . . . 10  |-  (  seq  1 (  +  ,  K )  ~~>  T  ->  T  e.  CC )
3230, 31syl 15 . . . . . . . . 9  |-  ( ph  ->  T  e.  CC )
3332adantr 451 . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  T  e.  CC )
3424adantr 451 . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  S  e.  CC )
35 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  S  =/=  0 )
3633, 34, 35divcld 9552 . . . . . . 7  |-  ( (
ph  /\  S  =/=  0 )  ->  ( T  /  S )  e.  CC )
3729, 36sylan2br 462 . . . . . 6  |-  ( (
ph  /\  -.  S  =  0 )  -> 
( T  /  S
)  e.  CC )
3828, 37ifclda 3605 . . . . 5  |-  ( ph  ->  if ( S  =  0 ,  0 ,  ( T  /  S
) )  e.  CC )
3938adantr 451 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  if ( S  =  0 , 
0 ,  ( T  /  S ) )  e.  CC )
40 rpvmasum.a . . . . 5  |-  ( ph  ->  N  e.  NN )
41 rpvmasum.1 . . . . 5  |-  .1.  =  ( 0g `  G )
42 dchrisum.n1 . . . . 5  |-  ( ph  ->  X  =/=  .1.  )
43 dchrvmasumif.f . . . . 5  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
44 dchrvmasumif.c . . . . 5  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
45 dchrvmasumif.1 . . . . 5  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  y
) )
465, 7, 40, 4, 6, 41, 8, 42, 43, 44, 22, 45dchrmusum2 20659 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  S ) )  e.  O ( 1 ) )
47 rpssre 10380 . . . . 5  |-  RR+  C_  RR
48 o1const 12109 . . . . 5  |-  ( (
RR+  C_  RR  /\  if ( S  =  0 ,  0 ,  ( T  /  S ) )  e.  CC )  ->  ( x  e.  RR+  |->  if ( S  =  0 ,  0 ,  ( T  /  S ) ) )  e.  O ( 1 ) )
4947, 38, 48sylancr 644 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  if ( S  =  0 ,  0 ,  ( T  /  S ) ) )  e.  O
( 1 ) )
5026, 39, 46, 49o1mul2 12114 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  S )  x.  if ( S  =  0 ,  0 ,  ( T  /  S
) ) ) )  e.  O ( 1 ) )
51 fzfid 11051 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( x  /  d
) ) )  e. 
Fin )
529adantr 451 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  X  e.  D )
53 elfzelz 10814 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( |_ `  (
x  /  d ) ) )  ->  k  e.  ZZ )
5453adantl 452 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  k  e.  ZZ )
554, 5, 6, 7, 52, 54dchrzrhcl 20500 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( X `  ( L `  k
) )  e.  CC )
56 simpr 447 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
5713nnrpd 10405 . . . . . . . . . . . . 13  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  RR+ )
58 rpdivcl 10392 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  d  e.  RR+ )  ->  (
x  /  d )  e.  RR+ )
5956, 57, 58syl2an 463 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  d )  e.  RR+ )
60 elfznn 10835 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1 ... ( |_ `  (
x  /  d ) ) )  ->  k  e.  NN )
6160nnrpd 10405 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... ( |_ `  (
x  /  d ) ) )  ->  k  e.  RR+ )
62 ifcl 3614 . . . . . . . . . . . 12  |-  ( ( ( x  /  d
)  e.  RR+  /\  k  e.  RR+ )  ->  if ( S  =  0 ,  ( x  / 
d ) ,  k )  e.  RR+ )
6359, 61, 62syl2an 463 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  if ( S  =  0 , 
( x  /  d
) ,  k )  e.  RR+ )
6463relogcld 19990 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( log `  if ( S  =  0 ,  ( x  /  d ) ,  k ) )  e.  RR )
6560adantl 452 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  k  e.  NN )
6664, 65nndivred 9810 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( log `  if ( S  =  0 ,  ( x  /  d ) ,  k ) )  /  k )  e.  RR )
6766recnd 8877 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( log `  if ( S  =  0 ,  ( x  /  d ) ,  k ) )  /  k )  e.  CC )
6855, 67mulcld 8871 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  k ) )  x.  ( ( log `  if ( S  =  0 ,  ( x  / 
d ) ,  k ) )  /  k
) )  e.  CC )
6951, 68fsumcl 12222 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( ( X `  ( L `  k ) )  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) )  e.  CC )
7020, 69mulcld 8871 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( X `  ( L `  k ) )  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  e.  CC )
713, 70fsumcl 12222 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  e.  CC )
7226, 39mulcld 8871 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  S )  x.  if ( S  =  0 ,  0 ,  ( T  /  S
) ) )  e.  CC )
7332ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  T  e.  CC )
74 ifcl 3614 . . . . . . . . . 10  |-  ( ( 0  e.  CC  /\  T  e.  CC )  ->  if ( S  =  0 ,  0 ,  T )  e.  CC )
7527, 73, 74sylancr 644 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  if ( S  =  0 , 
0 ,  T )  e.  CC )
7620, 69, 75subdid 9251 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( sum_ k  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( ( X `  ( L `  k ) )  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) )  -  if ( S  =  0 ,  0 ,  T ) ) )  =  ( ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  -  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  if ( S  =  0 ,  0 ,  T ) ) ) )
7776sumeq2dv 12192 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  ( sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) )  -  if ( S  =  0 ,  0 ,  T ) ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  -  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  if ( S  =  0 ,  0 ,  T ) ) ) )
7820, 75mulcld 8871 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  if ( S  =  0 ,  0 ,  T ) )  e.  CC )
793, 70, 78fsumsub 12266 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  -  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  if ( S  =  0 ,  0 ,  T ) ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( X `  ( L `  k ) )  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  -  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  if ( S  =  0 ,  0 ,  T ) ) ) )
8021, 25, 39mulassd 8874 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  S )  x.  if ( S  =  0 ,  0 ,  ( T  /  S
) ) )  =  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( S  x.  if ( S  =  0 ,  0 ,  ( T  /  S ) ) ) ) )
81 oveq2 5882 . . . . . . . . . . . . 13  |-  ( if ( S  =  0 ,  0 ,  ( T  /  S ) )  =  0  -> 
( S  x.  if ( S  =  0 ,  0 ,  ( T  /  S ) ) )  =  ( S  x.  0 ) )
82 oveq2 5882 . . . . . . . . . . . . 13  |-  ( if ( S  =  0 ,  0 ,  ( T  /  S ) )  =  ( T  /  S )  -> 
( S  x.  if ( S  =  0 ,  0 ,  ( T  /  S ) ) )  =  ( S  x.  ( T  /  S ) ) )
8381, 82ifsb 3587 . . . . . . . . . . . 12  |-  ( S  x.  if ( S  =  0 ,  0 ,  ( T  /  S ) ) )  =  if ( S  =  0 ,  ( S  x.  0 ) ,  ( S  x.  ( T  /  S
) ) )
8424mul01d 9027 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( S  x.  0 )  =  0 )
8584ifeq1d 3592 . . . . . . . . . . . . 13  |-  ( ph  ->  if ( S  =  0 ,  ( S  x.  0 ) ,  ( S  x.  ( T  /  S ) ) )  =  if ( S  =  0 ,  0 ,  ( S  x.  ( T  /  S ) ) ) )
8633, 34, 35divcan2d 9554 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  =/=  0 )  ->  ( S  x.  ( T  /  S ) )  =  T )
8729, 86sylan2br 462 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  -.  S  =  0 )  -> 
( S  x.  ( T  /  S ) )  =  T )
8887ifeq2da 3604 . . . . . . . . . . . . 13  |-  ( ph  ->  if ( S  =  0 ,  0 ,  ( S  x.  ( T  /  S ) ) )  =  if ( S  =  0 ,  0 ,  T ) )
8985, 88eqtrd 2328 . . . . . . . . . . . 12  |-  ( ph  ->  if ( S  =  0 ,  ( S  x.  0 ) ,  ( S  x.  ( T  /  S ) ) )  =  if ( S  =  0 ,  0 ,  T ) )
9083, 89syl5eq 2340 . . . . . . . . . . 11  |-  ( ph  ->  ( S  x.  if ( S  =  0 ,  0 ,  ( T  /  S ) ) )  =  if ( S  =  0 ,  0 ,  T
) )
9190adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( S  x.  if ( S  =  0 ,  0 ,  ( T  /  S
) ) )  =  if ( S  =  0 ,  0 ,  T ) )
9291oveq2d 5890 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( S  x.  if ( S  =  0 ,  0 ,  ( T  /  S ) ) ) )  =  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  if ( S  =  0 ,  0 ,  T ) ) )
9327, 32, 74sylancr 644 . . . . . . . . . . 11  |-  ( ph  ->  if ( S  =  0 ,  0 ,  T )  e.  CC )
9493adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  if ( S  =  0 , 
0 ,  T )  e.  CC )
953, 94, 20fsummulc1 12263 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  if ( S  =  0 ,  0 ,  T ) )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  if ( S  =  0 ,  0 ,  T
) ) )
9680, 92, 953eqtrrd 2333 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  if ( S  =  0 ,  0 ,  T
) )  =  ( ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  S )  x.  if ( S  =  0 ,  0 ,  ( T  /  S
) ) ) )
9796oveq2d 5890 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( X `  ( L `  k ) )  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  -  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  if ( S  =  0 ,  0 ,  T ) ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( X `  ( L `  k ) )  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  -  (
( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  S )  x.  if ( S  =  0 ,  0 ,  ( T  /  S
) ) ) ) )
9877, 79, 973eqtrd 2332 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  ( sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) )  -  if ( S  =  0 ,  0 ,  T ) ) )  =  (
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  -  (
( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  S )  x.  if ( S  =  0 ,  0 ,  ( T  /  S
) ) ) ) )
9998mpteq2dva 4122 . . . . 5  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( sum_ k  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( ( X `  ( L `  k ) )  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) )  -  if ( S  =  0 ,  0 ,  T ) ) ) )  =  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  -  (
( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  S )  x.  if ( S  =  0 ,  0 ,  ( T  /  S
) ) ) ) ) )
100 dchrvmasumif.g . . . . . 6  |-  K  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  x.  ( ( log `  a )  /  a ) ) )
101 dchrvmasumif.e . . . . . 6  |-  ( ph  ->  E  e.  ( 0 [,)  +oo ) )
102 dchrvmasumif.2 . . . . . 6  |-  ( ph  ->  A. y  e.  ( 3 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  K ) `
 ( |_ `  y ) )  -  T ) )  <_ 
( E  x.  (
( log `  y
)  /  y ) ) )
1035, 7, 40, 4, 6, 41, 8, 42, 43, 44, 22, 45, 100, 101, 30, 102dchrvmasumiflem1 20666 . . . . 5  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( sum_ k  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( ( X `  ( L `  k ) )  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) )  -  if ( S  =  0 ,  0 ,  T ) ) ) )  e.  O ( 1 ) )
10499, 103eqeltrrd 2371 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  -  (
( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  S )  x.  if ( S  =  0 ,  0 ,  ( T  /  S
) ) ) ) )  e.  O ( 1 ) )
10571, 72, 104o1dif 12119 . . 3  |-  ( ph  ->  ( ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) ) )  e.  O ( 1 )  <-> 
( x  e.  RR+  |->  ( ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  S )  x.  if ( S  =  0 ,  0 ,  ( T  /  S
) ) ) )  e.  O ( 1 ) ) )
10650, 105mpbird 223 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( X `  ( L `  k ) )  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) ) )  e.  O ( 1 ) )
1078ad2antrr 706 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D )
108 elfzelz 10814 . . . . . . 7  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  ZZ )
109108adantl 452 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  ZZ )
1104, 5, 6, 7, 107, 109dchrzrhcl 20500 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  n
) )  e.  CC )
111 elfznn 10835 . . . . . . . 8  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
112111adantl 452 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
113 vmacl 20372 . . . . . . . 8  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
114 nndivre 9797 . . . . . . . 8  |-  ( ( (Λ `  n )  e.  RR  /\  n  e.  NN )  ->  (
(Λ `  n )  /  n )  e.  RR )
115113, 114mpancom 650 . . . . . . 7  |-  ( n  e.  NN  ->  (
(Λ `  n )  /  n )  e.  RR )
116112, 115syl 15 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  RR )
117116recnd 8877 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
118110, 117mulcld 8871 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  n ) )  x.  ( (Λ `  n
)  /  n ) )  e.  CC )
1193, 118fsumcl 12222 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  e.  CC )
120 relogcl 19948 . . . . . 6  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
121120adantl 452 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( log `  x )  e.  RR )
122121recnd 8877 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( log `  x )  e.  CC )
123 ifcl 3614 . . . 4  |-  ( ( ( log `  x
)  e.  CC  /\  0  e.  CC )  ->  if ( S  =  0 ,  ( log `  x ) ,  0 )  e.  CC )
124122, 27, 123sylancl 643 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  if ( S  =  0 , 
( log `  x
) ,  0 )  e.  CC )
125119, 124addcld 8870 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 n ) )  x.  ( (Λ `  n
)  /  n ) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) )  e.  CC )
126125abscld 11934 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) ) )  e.  RR )
127126adantrr 697 . . 3  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) ) )  e.  RR )
12840adantr 451 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  N  e.  NN )
1298adantr 451 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  X  e.  D )
13042adantr 451 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  X  =/=  .1.  )
131 simprl 732 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR+ )
132 simprr 733 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  <_  x )
1335, 7, 128, 4, 6, 41, 129, 130, 131, 132dchrvmasum2if 20662 . . . 4  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) ) )
134133fveq2d 5545 . . 3  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) ) )  =  ( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) ) ) )
135 eqle 8939 . . 3  |-  ( ( ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) ) )  e.  RR  /\  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) ) )  =  ( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) ) ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) ) )  <_  ( abs `  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) ) ) )
136127, 134, 135syl2anc 642 . 2  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) ) )  <_  ( abs `  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) ) ) )
1372, 106, 71, 125, 136o1le 12142 1  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) ) )  e.  O
( 1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556    C_ wss 3165   ifcif 3578   class class class wbr 4039    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    +oocpnf 8880    <_ cle 8884    - cmin 9053    / cdiv 9439   NNcn 9762   3c3 9812   ZZcz 10040   RR+crp 10370   [,)cico 10674   ...cfz 10798   |_cfl 10940    seq cseq 11062   abscabs 11735    ~~> cli 11974   O (
1 )co1 11976   sum_csu 12174   Basecbs 13164   0gc0g 13416   ZRHomczrh 16467  ℤ/nczn 16470   logclog 19928  Λcvma 20345   mmucmu 20348  DChrcdchr 20487
This theorem is referenced by:  dchrvmasumif  20668
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-tpos 6250  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-er 6676  df-ec 6678  df-qs 6682  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-o1 11980  df-lo1 11981  df-sum 12175  df-ef 12365  df-e 12366  df-sin 12367  df-cos 12368  df-pi 12370  df-dvds 12548  df-gcd 12702  df-prm 12775  df-pc 12906  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-divs 13428  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-mhm 14431  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-mulg 14508  df-subg 14634  df-nsg 14635  df-eqg 14636  df-ghm 14697  df-cntz 14809  df-od 14860  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-cring 15357  df-ur 15358  df-oppr 15421  df-dvdsr 15439  df-unit 15440  df-invr 15470  df-dvr 15481  df-rnghom 15512  df-drng 15530  df-subrg 15559  df-lmod 15645  df-lss 15706  df-lsp 15745  df-sra 15941  df-rgmod 15942  df-lidl 15943  df-rsp 15944  df-2idl 16000  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-zrh 16471  df-zn 16474  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-cmp 17130  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-log 19930  df-cxp 19931  df-em 20303  df-vma 20351  df-mu 20354  df-dchr 20488
  Copyright terms: Public domain W3C validator