MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlem3 Unicode version

Theorem dchrvmasumlem3 20648
Description: Lemma for dchrvmasum 20674. (Contributed by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrvmasum.f  |-  ( (
ph  /\  m  e.  RR+ )  ->  F  e.  CC )
dchrvmasum.g  |-  ( m  =  ( x  / 
d )  ->  F  =  K )
dchrvmasum.c  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
dchrvmasum.t  |-  ( ph  ->  T  e.  CC )
dchrvmasum.1  |-  ( (
ph  /\  m  e.  ( 3 [,)  +oo ) )  ->  ( abs `  ( F  -  T ) )  <_ 
( C  x.  (
( log `  m
)  /  m ) ) )
dchrvmasum.r  |-  ( ph  ->  R  e.  RR )
dchrvmasum.2  |-  ( ph  ->  A. m  e.  ( 1 [,) 3 ) ( abs `  ( F  -  T )
)  <_  R )
Assertion
Ref Expression
dchrvmasumlem3  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( K  -  T ) ) )  e.  O ( 1 ) )
Distinct variable groups:    x, m,  .1.    m, d, x, C    F, d, x    m, K   
m, N, x    ph, d, m, x    T, d, m, x    R, d, m, x   
m, Z, x    D, m, x    L, d, m, x    X, d, m, x
Allowed substitution hints:    D( d)    .1. ( d)    F( m)    G( x, m, d)    K( x, d)    N( d)    Z( d)

Proof of Theorem dchrvmasumlem3
StepHypRef Expression
1 1re 8837 . . 3  |-  1  e.  RR
21a1i 10 . 2  |-  ( ph  ->  1  e.  RR )
3 rpvmasum.z . . 3  |-  Z  =  (ℤ/n `  N )
4 rpvmasum.l . . 3  |-  L  =  ( ZRHom `  Z
)
5 rpvmasum.a . . 3  |-  ( ph  ->  N  e.  NN )
6 rpvmasum.g . . 3  |-  G  =  (DChr `  N )
7 rpvmasum.d . . 3  |-  D  =  ( Base `  G
)
8 rpvmasum.1 . . 3  |-  .1.  =  ( 0g `  G )
9 dchrisum.b . . 3  |-  ( ph  ->  X  e.  D )
10 dchrisum.n1 . . 3  |-  ( ph  ->  X  =/=  .1.  )
11 dchrvmasum.f . . 3  |-  ( (
ph  /\  m  e.  RR+ )  ->  F  e.  CC )
12 dchrvmasum.g . . 3  |-  ( m  =  ( x  / 
d )  ->  F  =  K )
13 dchrvmasum.c . . 3  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
14 dchrvmasum.t . . 3  |-  ( ph  ->  T  e.  CC )
15 dchrvmasum.1 . . 3  |-  ( (
ph  /\  m  e.  ( 3 [,)  +oo ) )  ->  ( abs `  ( F  -  T ) )  <_ 
( C  x.  (
( log `  m
)  /  m ) ) )
16 dchrvmasum.r . . 3  |-  ( ph  ->  R  e.  RR )
17 dchrvmasum.2 . . 3  |-  ( ph  ->  A. m  e.  ( 1 [,) 3 ) ( abs `  ( F  -  T )
)  <_  R )
183, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17dchrvmasumlem2 20647 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  e.  O ( 1 ) )
19 fzfid 11035 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
20 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
21 elfznn 10819 . . . . . . . . 9  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
2221nnrpd 10389 . . . . . . . 8  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  RR+ )
23 rpdivcl 10376 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  d  e.  RR+ )  ->  (
x  /  d )  e.  RR+ )
2420, 22, 23syl2an 463 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  d )  e.  RR+ )
2511ralrimiva 2626 . . . . . . . 8  |-  ( ph  ->  A. m  e.  RR+  F  e.  CC )
2625ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  A. m  e.  RR+  F  e.  CC )
2712eleq1d 2349 . . . . . . . 8  |-  ( m  =  ( x  / 
d )  ->  ( F  e.  CC  <->  K  e.  CC ) )
2827rspcv 2880 . . . . . . 7  |-  ( ( x  /  d )  e.  RR+  ->  ( A. m  e.  RR+  F  e.  CC  ->  K  e.  CC ) )
2924, 26, 28sylc 56 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  K  e.  CC )
3014ad2antrr 706 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  T  e.  CC )
3129, 30subcld 9157 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( K  -  T )  e.  CC )
3231abscld 11918 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( K  -  T
) )  e.  RR )
3321adantl 452 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
3432, 33nndivred 9794 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( K  -  T ) )  / 
d )  e.  RR )
3519, 34fsumrecl 12207 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d )  e.  RR )
369ad2antrr 706 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D )
37 elfzelz 10798 . . . . . . 7  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  ZZ )
3837adantl 452 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  ZZ )
396, 3, 7, 4, 36, 38dchrzrhcl 20484 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
40 mucl 20379 . . . . . . . . 9  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  ZZ )
4133, 40syl 15 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  d )  e.  ZZ )
4241zred 10117 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  d )  e.  RR )
4342, 33nndivred 9794 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  d )  /  d )  e.  RR )
4443recnd 8861 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  d )  /  d )  e.  CC )
4539, 44mulcld 8855 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  e.  CC )
4645, 31mulcld 8855 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( K  -  T ) )  e.  CC )
4719, 46fsumcl 12206 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  ( K  -  T )
)  e.  CC )
4847abscld 11918 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  ( K  -  T )
) )  e.  RR )
4935recnd 8861 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d )  e.  CC )
5049abscld 11918 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  e.  RR )
5146abscld 11918 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  ( K  -  T )
) )  e.  RR )
5219, 51fsumrecl 12207 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( K  -  T ) ) )  e.  RR )
5319, 46fsumabs 12259 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  ( K  -  T )
) )  <_  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( K  -  T ) ) ) )
5445abscld 11918 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) ) )  e.  RR )
5533nnrecred 9791 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  d )  e.  RR )
5631absge0d 11926 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( K  -  T ) ) )
5739, 44absmuld 11936 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) ) )  =  ( ( abs `  ( X `
 ( L `  d ) ) )  x.  ( abs `  (
( mmu `  d
)  /  d ) ) ) )
5839abscld 11918 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( X `  ( L `  d )
) )  e.  RR )
591a1i 10 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
6044abscld 11918 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  d )  /  d
) )  e.  RR )
6139absge0d 11926 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( X `
 ( L `  d ) ) ) )
6244absge0d 11926 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( mmu `  d )  /  d ) ) )
63 eqid 2283 . . . . . . . . . . . 12  |-  ( Base `  Z )  =  (
Base `  Z )
645nnnn0d 10018 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  NN0 )
653, 63, 4znzrhfo 16501 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Z
) )
6664, 65syl 15 . . . . . . . . . . . . . . 15  |-  ( ph  ->  L : ZZ -onto-> ( Base `  Z ) )
67 fof 5451 . . . . . . . . . . . . . . 15  |-  ( L : ZZ -onto-> ( Base `  Z )  ->  L : ZZ --> ( Base `  Z
) )
6866, 67syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  L : ZZ --> ( Base `  Z ) )
6968ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  L : ZZ
--> ( Base `  Z
) )
70 ffvelrn 5663 . . . . . . . . . . . . 13  |-  ( ( L : ZZ --> ( Base `  Z )  /\  d  e.  ZZ )  ->  ( L `  d )  e.  ( Base `  Z
) )
7169, 38, 70syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( L `  d )  e.  (
Base `  Z )
)
726, 7, 3, 63, 36, 71dchrabs2 20501 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( X `  ( L `  d )
) )  <_  1
)
7342recnd 8861 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  d )  e.  CC )
7433nncnd 9762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  CC )
7533nnne0d 9790 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  =/=  0 )
7673, 74, 75absdivd 11937 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  d )  /  d
) )  =  ( ( abs `  (
mmu `  d )
)  /  ( abs `  d ) ) )
7733nnrpd 10389 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR+ )
7877rprege0d 10397 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( d  e.  RR  /\  0  <_ 
d ) )
79 absid 11781 . . . . . . . . . . . . . . 15  |-  ( ( d  e.  RR  /\  0  <_  d )  -> 
( abs `  d
)  =  d )
8078, 79syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  d )  =  d )
8180oveq2d 5874 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  d ) )  / 
( abs `  d
) )  =  ( ( abs `  (
mmu `  d )
)  /  d ) )
8276, 81eqtrd 2315 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  d )  /  d
) )  =  ( ( abs `  (
mmu `  d )
)  /  d ) )
8373abscld 11918 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( mmu `  d
) )  e.  RR )
84 mule1 20386 . . . . . . . . . . . . . 14  |-  ( d  e.  NN  ->  ( abs `  ( mmu `  d ) )  <_ 
1 )
8533, 84syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( mmu `  d
) )  <_  1
)
8683, 59, 77, 85lediv1dd 10444 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  d ) )  / 
d )  <_  (
1  /  d ) )
8782, 86eqbrtrd 4043 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  d )  /  d
) )  <_  (
1  /  d ) )
8858, 59, 60, 55, 61, 62, 72, 87lemul12ad 9699 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( X `  ( L `  d ) ) )  x.  ( abs `  ( ( mmu `  d )  /  d
) ) )  <_ 
( 1  x.  (
1  /  d ) ) )
8955recnd 8861 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  d )  e.  CC )
9089mulid2d 8853 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  ( 1  / 
d ) )  =  ( 1  /  d
) )
9188, 90breqtrd 4047 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( X `  ( L `  d ) ) )  x.  ( abs `  ( ( mmu `  d )  /  d
) ) )  <_ 
( 1  /  d
) )
9257, 91eqbrtrd 4043 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) ) )  <_  ( 1  /  d ) )
9354, 55, 32, 56, 92lemul1ad 9696 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) ) )  x.  ( abs `  ( K  -  T )
) )  <_  (
( 1  /  d
)  x.  ( abs `  ( K  -  T
) ) ) )
9445, 31absmuld 11936 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  ( K  -  T )
) )  =  ( ( abs `  (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) ) )  x.  ( abs `  ( K  -  T
) ) ) )
9532recnd 8861 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( K  -  T
) )  e.  CC )
9695, 74, 75divrec2d 9540 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( K  -  T ) )  / 
d )  =  ( ( 1  /  d
)  x.  ( abs `  ( K  -  T
) ) ) )
9793, 94, 963brtr4d 4053 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  ( K  -  T )
) )  <_  (
( abs `  ( K  -  T )
)  /  d ) )
9819, 51, 34, 97fsumle 12257 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( K  -  T ) ) )  <_  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )
9948, 52, 35, 53, 98letrd 8973 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  ( K  -  T )
) )  <_  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )
10035leabsd 11897 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d )  <_  ( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) ) )
10148, 35, 50, 99, 100letrd 8973 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  ( K  -  T )
) )  <_  ( abs `  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) ) )
102101adantrr 697 . 2  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( K  -  T ) ) )  <_  ( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) ) )
1032, 18, 35, 47, 102o1le 12126 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( K  -  T ) ) )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   class class class wbr 4023    e. cmpt 4077   -->wf 5251   -onto->wfo 5253   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    x. cmul 8742    +oocpnf 8864    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   3c3 9796   NN0cn0 9965   ZZcz 10024   RR+crp 10354   [,)cico 10658   ...cfz 10782   |_cfl 10924   abscabs 11719   O ( 1 )co1 11960   sum_csu 12158   Basecbs 13148   0gc0g 13400   ZRHomczrh 16451  ℤ/nczn 16454   logclog 19912   mmucmu 20332  DChrcdchr 20471
This theorem is referenced by:  dchrvmasumiflem1  20650
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-ec 6662  df-qs 6666  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-o1 11964  df-lo1 11965  df-sum 12159  df-ef 12349  df-e 12350  df-sin 12351  df-cos 12352  df-pi 12354  df-dvds 12532  df-prm 12759  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-divs 13412  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-nsg 14619  df-eqg 14620  df-ghm 14681  df-cntz 14793  df-od 14844  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-dvr 15465  df-rnghom 15496  df-drng 15514  df-subrg 15543  df-lmod 15629  df-lss 15690  df-lsp 15729  df-sra 15925  df-rgmod 15926  df-lidl 15927  df-rsp 15928  df-2idl 15984  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-zrh 16455  df-zn 16458  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-cmp 17114  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217  df-log 19914  df-cxp 19915  df-em 20287  df-mu 20338  df-dchr 20472
  Copyright terms: Public domain W3C validator