MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlema Structured version   Unicode version

Theorem dchrvmasumlema 21184
Description: Lemma for dchrvmasum 21209 and dchrvmasumif 21187. Apply dchrisum 21176 for the function  log ( y )  /  y, which is decreasing above  _e (or above 3, the nearest integer bound). (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrvmasumlema.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  x.  ( ( log `  a )  /  a ) ) )
Assertion
Ref Expression
dchrvmasumlema  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. y  e.  ( 3 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  y ) )  -  t ) )  <_ 
( c  x.  (
( log `  y
)  /  y ) ) ) )
Distinct variable groups:    t, c,
y,  .1.    F, c, t, y    a, c, t, y    N, c, t, y    ph, c, t    y, Z    D, c, t, y    L, a, c, t, y    X, a, c, t, y
Allowed substitution hints:    ph( y, a)    D( a)    .1. ( a)    F( a)    G( y, t, a, c)    N( a)    Z( t, a, c)

Proof of Theorem dchrvmasumlema
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . 3  |-  Z  =  (ℤ/n `  N )
2 rpvmasum.l . . 3  |-  L  =  ( ZRHom `  Z
)
3 rpvmasum.a . . 3  |-  ( ph  ->  N  e.  NN )
4 rpvmasum.g . . 3  |-  G  =  (DChr `  N )
5 rpvmasum.d . . 3  |-  D  =  ( Base `  G
)
6 rpvmasum.1 . . 3  |-  .1.  =  ( 0g `  G )
7 dchrisum.b . . 3  |-  ( ph  ->  X  e.  D )
8 dchrisum.n1 . . 3  |-  ( ph  ->  X  =/=  .1.  )
9 fveq2 5720 . . . 4  |-  ( n  =  x  ->  ( log `  n )  =  ( log `  x
) )
10 id 20 . . . 4  |-  ( n  =  x  ->  n  =  x )
119, 10oveq12d 6091 . . 3  |-  ( n  =  x  ->  (
( log `  n
)  /  n )  =  ( ( log `  x )  /  x
) )
12 3nn 10124 . . . 4  |-  3  e.  NN
1312a1i 11 . . 3  |-  ( ph  ->  3  e.  NN )
14 relogcl 20463 . . . . 5  |-  ( n  e.  RR+  ->  ( log `  n )  e.  RR )
15 rerpdivcl 10629 . . . . 5  |-  ( ( ( log `  n
)  e.  RR  /\  n  e.  RR+ )  -> 
( ( log `  n
)  /  n )  e.  RR )
1614, 15mpancom 651 . . . 4  |-  ( n  e.  RR+  ->  ( ( log `  n )  /  n )  e.  RR )
1716adantl 453 . . 3  |-  ( (
ph  /\  n  e.  RR+ )  ->  ( ( log `  n )  /  n )  e.  RR )
18 simp3r 986 . . . 4  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  n  <_  x
)
19 simp2l 983 . . . . . 6  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  n  e.  RR+ )
2019rpred 10638 . . . . 5  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  n  e.  RR )
21 ere 12681 . . . . . . 7  |-  _e  e.  RR
2221a1i 11 . . . . . 6  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  _e  e.  RR )
23 3re 10061 . . . . . . 7  |-  3  e.  RR
2423a1i 11 . . . . . 6  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  3  e.  RR )
25 egt2lt3 12795 . . . . . . . . 9  |-  ( 2  <  _e  /\  _e  <  3 )
2625simpri 449 . . . . . . . 8  |-  _e  <  3
2721, 23, 26ltleii 9186 . . . . . . 7  |-  _e  <_  3
2827a1i 11 . . . . . 6  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  _e  <_  3
)
29 simp3l 985 . . . . . 6  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  3  <_  n
)
3022, 24, 20, 28, 29letrd 9217 . . . . 5  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  _e  <_  n
)
31 simp2r 984 . . . . . 6  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  x  e.  RR+ )
3231rpred 10638 . . . . 5  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  x  e.  RR )
3322, 20, 32, 30, 18letrd 9217 . . . . 5  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  _e  <_  x
)
34 logdivle 20507 . . . . 5  |-  ( ( ( n  e.  RR  /\  _e  <_  n )  /\  ( x  e.  RR  /\  _e  <_  x )
)  ->  ( n  <_  x  <->  ( ( log `  x )  /  x
)  <_  ( ( log `  n )  /  n ) ) )
3520, 30, 32, 33, 34syl22anc 1185 . . . 4  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  ( n  <_  x 
<->  ( ( log `  x
)  /  x )  <_  ( ( log `  n )  /  n
) ) )
3618, 35mpbid 202 . . 3  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  ( ( log `  x )  /  x
)  <_  ( ( log `  n )  /  n ) )
37 rpcn 10610 . . . . . . 7  |-  ( n  e.  RR+  ->  n  e.  CC )
3837cxp1d 20587 . . . . . 6  |-  ( n  e.  RR+  ->  ( n  ^ c  1 )  =  n )
3938oveq2d 6089 . . . . 5  |-  ( n  e.  RR+  ->  ( ( log `  n )  /  ( n  ^ c  1 ) )  =  ( ( log `  n )  /  n
) )
4039mpteq2ia 4283 . . . 4  |-  ( n  e.  RR+  |->  ( ( log `  n )  /  ( n  ^ c  1 ) ) )  =  ( n  e.  RR+  |->  ( ( log `  n )  /  n ) )
41 1rp 10606 . . . . 5  |-  1  e.  RR+
42 cxploglim 20806 . . . . 5  |-  ( 1  e.  RR+  ->  ( n  e.  RR+  |->  ( ( log `  n )  /  ( n  ^ c  1 ) ) )  ~~> r  0 )
4341, 42mp1i 12 . . . 4  |-  ( ph  ->  ( n  e.  RR+  |->  ( ( log `  n
)  /  ( n  ^ c  1 ) ) )  ~~> r  0 )
4440, 43syl5eqbrr 4238 . . 3  |-  ( ph  ->  ( n  e.  RR+  |->  ( ( log `  n
)  /  n ) )  ~~> r  0 )
45 dchrvmasumlema.f . . . 4  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  x.  ( ( log `  a )  /  a ) ) )
46 fveq2 5720 . . . . . . 7  |-  ( a  =  n  ->  ( L `  a )  =  ( L `  n ) )
4746fveq2d 5724 . . . . . 6  |-  ( a  =  n  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  n )
) )
48 fveq2 5720 . . . . . . 7  |-  ( a  =  n  ->  ( log `  a )  =  ( log `  n
) )
49 id 20 . . . . . . 7  |-  ( a  =  n  ->  a  =  n )
5048, 49oveq12d 6091 . . . . . 6  |-  ( a  =  n  ->  (
( log `  a
)  /  a )  =  ( ( log `  n )  /  n
) )
5147, 50oveq12d 6091 . . . . 5  |-  ( a  =  n  ->  (
( X `  ( L `  a )
)  x.  ( ( log `  a )  /  a ) )  =  ( ( X `
 ( L `  n ) )  x.  ( ( log `  n
)  /  n ) ) )
5251cbvmptv 4292 . . . 4  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( ( log `  a )  /  a
) ) )  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  x.  ( ( log `  n )  /  n ) ) )
5345, 52eqtri 2455 . . 3  |-  F  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  x.  ( ( log `  n )  /  n ) ) )
541, 2, 3, 4, 5, 6, 7, 8, 11, 13, 17, 36, 44, 53dchrisum 21176 . 2  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. x  e.  ( 3 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
( log `  x
)  /  x ) ) ) )
55 fveq2 5720 . . . . . . . . . 10  |-  ( x  =  y  ->  ( |_ `  x )  =  ( |_ `  y
) )
5655fveq2d 5724 . . . . . . . . 9  |-  ( x  =  y  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) )  =  (  seq  1
(  +  ,  F
) `  ( |_ `  y ) ) )
5756oveq1d 6088 . . . . . . . 8  |-  ( x  =  y  ->  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t )  =  ( (  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  t ) )
5857fveq2d 5724 . . . . . . 7  |-  ( x  =  y  ->  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) )  =  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  t ) ) )
59 fveq2 5720 . . . . . . . . 9  |-  ( x  =  y  ->  ( log `  x )  =  ( log `  y
) )
60 id 20 . . . . . . . . 9  |-  ( x  =  y  ->  x  =  y )
6159, 60oveq12d 6091 . . . . . . . 8  |-  ( x  =  y  ->  (
( log `  x
)  /  x )  =  ( ( log `  y )  /  y
) )
6261oveq2d 6089 . . . . . . 7  |-  ( x  =  y  ->  (
c  x.  ( ( log `  x )  /  x ) )  =  ( c  x.  ( ( log `  y
)  /  y ) ) )
6358, 62breq12d 4217 . . . . . 6  |-  ( x  =  y  ->  (
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
( log `  x
)  /  x ) )  <->  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  x.  (
( log `  y
)  /  y ) ) ) )
6463cbvralv 2924 . . . . 5  |-  ( A. x  e.  ( 3 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
( log `  x
)  /  x ) )  <->  A. y  e.  ( 3 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  x.  (
( log `  y
)  /  y ) ) )
6564anbi2i 676 . . . 4  |-  ( (  seq  1 (  +  ,  F )  ~~>  t  /\  A. x  e.  ( 3 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
( log `  x
)  /  x ) ) )  <->  (  seq  1 (  +  ,  F )  ~~>  t  /\  A. y  e.  ( 3 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  y ) )  -  t ) )  <_ 
( c  x.  (
( log `  y
)  /  y ) ) ) )
6665rexbii 2722 . . 3  |-  ( E. c  e.  ( 0 [,)  +oo ) (  seq  1 (  +  ,  F )  ~~>  t  /\  A. x  e.  ( 3 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
( log `  x
)  /  x ) ) )  <->  E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. y  e.  ( 3 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  y ) )  -  t ) )  <_ 
( c  x.  (
( log `  y
)  /  y ) ) ) )
6766exbii 1592 . 2  |-  ( E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. x  e.  ( 3 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
( log `  x
)  /  x ) ) )  <->  E. t E. c  e.  (
0 [,)  +oo ) (  seq  1 (  +  ,  F )  ~~>  t  /\  A. y  e.  ( 3 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  y ) )  -  t ) )  <_ 
( c  x.  (
( log `  y
)  /  y ) ) ) )
6854, 67sylib 189 1  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. y  e.  ( 3 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  y ) )  -  t ) )  <_ 
( c  x.  (
( log `  y
)  /  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   class class class wbr 4204    e. cmpt 4258   ` cfv 5446  (class class class)co 6073   RRcr 8979   0cc0 8980   1c1 8981    + caddc 8983    x. cmul 8985    +oocpnf 9107    < clt 9110    <_ cle 9111    - cmin 9281    / cdiv 9667   NNcn 9990   2c2 10039   3c3 10040   RR+crp 10602   [,)cico 10908   |_cfl 11191    seq cseq 11313   abscabs 12029    ~~> cli 12268    ~~> r crli 12269   _eceu 12655   Basecbs 13459   0gc0g 13713   ZRHomczrh 16768  ℤ/nczn 16771   logclog 20442    ^ c ccxp 20443  DChrcdchr 21006
This theorem is referenced by:  dchrvmasumif  21187
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7586  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057  ax-pre-sup 9058  ax-addf 9059  ax-mulf 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-tpos 6471  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-ec 6899  df-qs 6903  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7469  df-card 7816  df-cda 8038  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-div 9668  df-nn 9991  df-2 10048  df-3 10049  df-4 10050  df-5 10051  df-6 10052  df-7 10053  df-8 10054  df-9 10055  df-10 10056  df-n0 10212  df-z 10273  df-dec 10373  df-uz 10479  df-q 10565  df-rp 10603  df-xneg 10700  df-xadd 10701  df-xmul 10702  df-ioo 10910  df-ioc 10911  df-ico 10912  df-icc 10913  df-fz 11034  df-fzo 11126  df-fl 11192  df-mod 11241  df-seq 11314  df-exp 11373  df-fac 11557  df-bc 11584  df-hash 11609  df-shft 11872  df-cj 11894  df-re 11895  df-im 11896  df-sqr 12030  df-abs 12031  df-limsup 12255  df-clim 12272  df-rlim 12273  df-sum 12470  df-ef 12660  df-e 12661  df-sin 12662  df-cos 12663  df-pi 12665  df-dvds 12843  df-gcd 12997  df-phi 13145  df-struct 13461  df-ndx 13462  df-slot 13463  df-base 13464  df-sets 13465  df-ress 13466  df-plusg 13532  df-mulr 13533  df-starv 13534  df-sca 13535  df-vsca 13536  df-tset 13538  df-ple 13539  df-ds 13541  df-unif 13542  df-hom 13543  df-cco 13544  df-rest 13640  df-topn 13641  df-topgen 13657  df-pt 13658  df-prds 13661  df-xrs 13716  df-0g 13717  df-gsum 13718  df-qtop 13723  df-imas 13724  df-divs 13725  df-xps 13726  df-mre 13801  df-mrc 13802  df-acs 13804  df-mnd 14680  df-mhm 14728  df-submnd 14729  df-grp 14802  df-minusg 14803  df-sbg 14804  df-mulg 14805  df-subg 14931  df-nsg 14932  df-eqg 14933  df-ghm 14994  df-cntz 15106  df-cmn 15404  df-abl 15405  df-mgp 15639  df-rng 15653  df-cring 15654  df-ur 15655  df-oppr 15718  df-dvdsr 15736  df-unit 15737  df-invr 15767  df-rnghom 15809  df-subrg 15856  df-lmod 15942  df-lss 15999  df-lsp 16038  df-sra 16234  df-rgmod 16235  df-lidl 16236  df-rsp 16237  df-2idl 16293  df-psmet 16684  df-xmet 16685  df-met 16686  df-bl 16687  df-mopn 16688  df-fbas 16689  df-fg 16690  df-cnfld 16694  df-zrh 16772  df-zn 16775  df-top 16953  df-bases 16955  df-topon 16956  df-topsp 16957  df-cld 17073  df-ntr 17074  df-cls 17075  df-nei 17152  df-lp 17190  df-perf 17191  df-cn 17281  df-cnp 17282  df-haus 17369  df-tx 17584  df-hmeo 17777  df-fil 17868  df-fm 17960  df-flim 17961  df-flf 17962  df-xms 18340  df-ms 18341  df-tms 18342  df-cncf 18898  df-limc 19743  df-dv 19744  df-log 20444  df-cxp 20445  df-dchr 21007
  Copyright terms: Public domain W3C validator