MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlema Unicode version

Theorem dchrvmasumlema 21054
Description: Lemma for dchrvmasum 21079 and dchrvmasumif 21057. Apply dchrisum 21046 for the function  log ( y )  /  y, which is decreasing above  _e (or above 3, the nearest integer bound). (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrvmasumlema.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  x.  ( ( log `  a )  /  a ) ) )
Assertion
Ref Expression
dchrvmasumlema  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. y  e.  ( 3 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  y ) )  -  t ) )  <_ 
( c  x.  (
( log `  y
)  /  y ) ) ) )
Distinct variable groups:    t, c,
y,  .1.    F, c, t, y    a, c, t, y    N, c, t, y    ph, c, t    y, Z    D, c, t, y    L, a, c, t, y    X, a, c, t, y
Allowed substitution hints:    ph( y, a)    D( a)    .1. ( a)    F( a)    G( y, t, a, c)    N( a)    Z( t, a, c)

Proof of Theorem dchrvmasumlema
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . 3  |-  Z  =  (ℤ/n `  N )
2 rpvmasum.l . . 3  |-  L  =  ( ZRHom `  Z
)
3 rpvmasum.a . . 3  |-  ( ph  ->  N  e.  NN )
4 rpvmasum.g . . 3  |-  G  =  (DChr `  N )
5 rpvmasum.d . . 3  |-  D  =  ( Base `  G
)
6 rpvmasum.1 . . 3  |-  .1.  =  ( 0g `  G )
7 dchrisum.b . . 3  |-  ( ph  ->  X  e.  D )
8 dchrisum.n1 . . 3  |-  ( ph  ->  X  =/=  .1.  )
9 fveq2 5661 . . . 4  |-  ( n  =  x  ->  ( log `  n )  =  ( log `  x
) )
10 id 20 . . . 4  |-  ( n  =  x  ->  n  =  x )
119, 10oveq12d 6031 . . 3  |-  ( n  =  x  ->  (
( log `  n
)  /  n )  =  ( ( log `  x )  /  x
) )
12 3nn 10059 . . . 4  |-  3  e.  NN
1312a1i 11 . . 3  |-  ( ph  ->  3  e.  NN )
14 relogcl 20333 . . . . 5  |-  ( n  e.  RR+  ->  ( log `  n )  e.  RR )
15 rerpdivcl 10564 . . . . 5  |-  ( ( ( log `  n
)  e.  RR  /\  n  e.  RR+ )  -> 
( ( log `  n
)  /  n )  e.  RR )
1614, 15mpancom 651 . . . 4  |-  ( n  e.  RR+  ->  ( ( log `  n )  /  n )  e.  RR )
1716adantl 453 . . 3  |-  ( (
ph  /\  n  e.  RR+ )  ->  ( ( log `  n )  /  n )  e.  RR )
18 simp3r 986 . . . 4  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  n  <_  x
)
19 simp2l 983 . . . . . 6  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  n  e.  RR+ )
2019rpred 10573 . . . . 5  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  n  e.  RR )
21 ere 12611 . . . . . . 7  |-  _e  e.  RR
2221a1i 11 . . . . . 6  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  _e  e.  RR )
23 3re 9996 . . . . . . 7  |-  3  e.  RR
2423a1i 11 . . . . . 6  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  3  e.  RR )
25 egt2lt3 12725 . . . . . . . . 9  |-  ( 2  <  _e  /\  _e  <  3 )
2625simpri 449 . . . . . . . 8  |-  _e  <  3
2721, 23, 26ltleii 9120 . . . . . . 7  |-  _e  <_  3
2827a1i 11 . . . . . 6  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  _e  <_  3
)
29 simp3l 985 . . . . . 6  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  3  <_  n
)
3022, 24, 20, 28, 29letrd 9152 . . . . 5  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  _e  <_  n
)
31 simp2r 984 . . . . . 6  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  x  e.  RR+ )
3231rpred 10573 . . . . 5  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  x  e.  RR )
3322, 20, 32, 30, 18letrd 9152 . . . . 5  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  _e  <_  x
)
34 logdivle 20377 . . . . 5  |-  ( ( ( n  e.  RR  /\  _e  <_  n )  /\  ( x  e.  RR  /\  _e  <_  x )
)  ->  ( n  <_  x  <->  ( ( log `  x )  /  x
)  <_  ( ( log `  n )  /  n ) ) )
3520, 30, 32, 33, 34syl22anc 1185 . . . 4  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  ( n  <_  x 
<->  ( ( log `  x
)  /  x )  <_  ( ( log `  n )  /  n
) ) )
3618, 35mpbid 202 . . 3  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
3  <_  n  /\  n  <_  x ) )  ->  ( ( log `  x )  /  x
)  <_  ( ( log `  n )  /  n ) )
37 rpcn 10545 . . . . . . 7  |-  ( n  e.  RR+  ->  n  e.  CC )
3837cxp1d 20457 . . . . . 6  |-  ( n  e.  RR+  ->  ( n  ^ c  1 )  =  n )
3938oveq2d 6029 . . . . 5  |-  ( n  e.  RR+  ->  ( ( log `  n )  /  ( n  ^ c  1 ) )  =  ( ( log `  n )  /  n
) )
4039mpteq2ia 4225 . . . 4  |-  ( n  e.  RR+  |->  ( ( log `  n )  /  ( n  ^ c  1 ) ) )  =  ( n  e.  RR+  |->  ( ( log `  n )  /  n ) )
41 1rp 10541 . . . . 5  |-  1  e.  RR+
42 cxploglim 20676 . . . . 5  |-  ( 1  e.  RR+  ->  ( n  e.  RR+  |->  ( ( log `  n )  /  ( n  ^ c  1 ) ) )  ~~> r  0 )
4341, 42mp1i 12 . . . 4  |-  ( ph  ->  ( n  e.  RR+  |->  ( ( log `  n
)  /  ( n  ^ c  1 ) ) )  ~~> r  0 )
4440, 43syl5eqbrr 4180 . . 3  |-  ( ph  ->  ( n  e.  RR+  |->  ( ( log `  n
)  /  n ) )  ~~> r  0 )
45 dchrvmasumlema.f . . . 4  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  x.  ( ( log `  a )  /  a ) ) )
46 fveq2 5661 . . . . . . 7  |-  ( a  =  n  ->  ( L `  a )  =  ( L `  n ) )
4746fveq2d 5665 . . . . . 6  |-  ( a  =  n  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  n )
) )
48 fveq2 5661 . . . . . . 7  |-  ( a  =  n  ->  ( log `  a )  =  ( log `  n
) )
49 id 20 . . . . . . 7  |-  ( a  =  n  ->  a  =  n )
5048, 49oveq12d 6031 . . . . . 6  |-  ( a  =  n  ->  (
( log `  a
)  /  a )  =  ( ( log `  n )  /  n
) )
5147, 50oveq12d 6031 . . . . 5  |-  ( a  =  n  ->  (
( X `  ( L `  a )
)  x.  ( ( log `  a )  /  a ) )  =  ( ( X `
 ( L `  n ) )  x.  ( ( log `  n
)  /  n ) ) )
5251cbvmptv 4234 . . . 4  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( ( log `  a )  /  a
) ) )  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  x.  ( ( log `  n )  /  n ) ) )
5345, 52eqtri 2400 . . 3  |-  F  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  x.  ( ( log `  n )  /  n ) ) )
541, 2, 3, 4, 5, 6, 7, 8, 11, 13, 17, 36, 44, 53dchrisum 21046 . 2  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. x  e.  ( 3 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
( log `  x
)  /  x ) ) ) )
55 fveq2 5661 . . . . . . . . . 10  |-  ( x  =  y  ->  ( |_ `  x )  =  ( |_ `  y
) )
5655fveq2d 5665 . . . . . . . . 9  |-  ( x  =  y  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) )  =  (  seq  1
(  +  ,  F
) `  ( |_ `  y ) ) )
5756oveq1d 6028 . . . . . . . 8  |-  ( x  =  y  ->  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t )  =  ( (  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  t ) )
5857fveq2d 5665 . . . . . . 7  |-  ( x  =  y  ->  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) )  =  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  t ) ) )
59 fveq2 5661 . . . . . . . . 9  |-  ( x  =  y  ->  ( log `  x )  =  ( log `  y
) )
60 id 20 . . . . . . . . 9  |-  ( x  =  y  ->  x  =  y )
6159, 60oveq12d 6031 . . . . . . . 8  |-  ( x  =  y  ->  (
( log `  x
)  /  x )  =  ( ( log `  y )  /  y
) )
6261oveq2d 6029 . . . . . . 7  |-  ( x  =  y  ->  (
c  x.  ( ( log `  x )  /  x ) )  =  ( c  x.  ( ( log `  y
)  /  y ) ) )
6358, 62breq12d 4159 . . . . . 6  |-  ( x  =  y  ->  (
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
( log `  x
)  /  x ) )  <->  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  x.  (
( log `  y
)  /  y ) ) ) )
6463cbvralv 2868 . . . . 5  |-  ( A. x  e.  ( 3 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
( log `  x
)  /  x ) )  <->  A. y  e.  ( 3 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  x.  (
( log `  y
)  /  y ) ) )
6564anbi2i 676 . . . 4  |-  ( (  seq  1 (  +  ,  F )  ~~>  t  /\  A. x  e.  ( 3 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
( log `  x
)  /  x ) ) )  <->  (  seq  1 (  +  ,  F )  ~~>  t  /\  A. y  e.  ( 3 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  y ) )  -  t ) )  <_ 
( c  x.  (
( log `  y
)  /  y ) ) ) )
6665rexbii 2667 . . 3  |-  ( E. c  e.  ( 0 [,)  +oo ) (  seq  1 (  +  ,  F )  ~~>  t  /\  A. x  e.  ( 3 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
( log `  x
)  /  x ) ) )  <->  E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. y  e.  ( 3 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  y ) )  -  t ) )  <_ 
( c  x.  (
( log `  y
)  /  y ) ) ) )
6766exbii 1589 . 2  |-  ( E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. x  e.  ( 3 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
( log `  x
)  /  x ) ) )  <->  E. t E. c  e.  (
0 [,)  +oo ) (  seq  1 (  +  ,  F )  ~~>  t  /\  A. y  e.  ( 3 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  y ) )  -  t ) )  <_ 
( c  x.  (
( log `  y
)  /  y ) ) ) )
6854, 67sylib 189 1  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. y  e.  ( 3 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  y ) )  -  t ) )  <_ 
( c  x.  (
( log `  y
)  /  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1717    =/= wne 2543   A.wral 2642   E.wrex 2643   class class class wbr 4146    e. cmpt 4200   ` cfv 5387  (class class class)co 6013   RRcr 8915   0cc0 8916   1c1 8917    + caddc 8919    x. cmul 8921    +oocpnf 9043    < clt 9046    <_ cle 9047    - cmin 9216    / cdiv 9602   NNcn 9925   2c2 9974   3c3 9975   RR+crp 10537   [,)cico 10843   |_cfl 11121    seq cseq 11243   abscabs 11959    ~~> cli 12198    ~~> r crli 12199   _eceu 12585   Basecbs 13389   0gc0g 13643   ZRHomczrh 16694  ℤ/nczn 16697   logclog 20312    ^ c ccxp 20313  DChrcdchr 20876
This theorem is referenced by:  dchrvmasumif  21057
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-inf2 7522  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994  ax-addf 8995  ax-mulf 8996
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-iin 4031  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-se 4476  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-isom 5396  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-of 6237  df-1st 6281  df-2nd 6282  df-tpos 6408  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-2o 6654  df-oadd 6657  df-er 6834  df-ec 6836  df-qs 6840  df-map 6949  df-pm 6950  df-ixp 6993  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-fi 7344  df-sup 7374  df-oi 7405  df-card 7752  df-cda 7974  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-5 9986  df-6 9987  df-7 9988  df-8 9989  df-9 9990  df-10 9991  df-n0 10147  df-z 10208  df-dec 10308  df-uz 10414  df-q 10500  df-rp 10538  df-xneg 10635  df-xadd 10636  df-xmul 10637  df-ioo 10845  df-ioc 10846  df-ico 10847  df-icc 10848  df-fz 10969  df-fzo 11059  df-fl 11122  df-mod 11171  df-seq 11244  df-exp 11303  df-fac 11487  df-bc 11514  df-hash 11539  df-shft 11802  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961  df-limsup 12185  df-clim 12202  df-rlim 12203  df-sum 12400  df-ef 12590  df-e 12591  df-sin 12592  df-cos 12593  df-pi 12595  df-dvds 12773  df-gcd 12927  df-phi 13075  df-struct 13391  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-ress 13396  df-plusg 13462  df-mulr 13463  df-starv 13464  df-sca 13465  df-vsca 13466  df-tset 13468  df-ple 13469  df-ds 13471  df-unif 13472  df-hom 13473  df-cco 13474  df-rest 13570  df-topn 13571  df-topgen 13587  df-pt 13588  df-prds 13591  df-xrs 13646  df-0g 13647  df-gsum 13648  df-qtop 13653  df-imas 13654  df-divs 13655  df-xps 13656  df-mre 13731  df-mrc 13732  df-acs 13734  df-mnd 14610  df-mhm 14658  df-submnd 14659  df-grp 14732  df-minusg 14733  df-sbg 14734  df-mulg 14735  df-subg 14861  df-nsg 14862  df-eqg 14863  df-ghm 14924  df-cntz 15036  df-cmn 15334  df-abl 15335  df-mgp 15569  df-rng 15583  df-cring 15584  df-ur 15585  df-oppr 15648  df-dvdsr 15666  df-unit 15667  df-invr 15697  df-rnghom 15739  df-subrg 15786  df-lmod 15872  df-lss 15929  df-lsp 15968  df-sra 16164  df-rgmod 16165  df-lidl 16166  df-rsp 16167  df-2idl 16223  df-xmet 16612  df-met 16613  df-bl 16614  df-mopn 16615  df-fbas 16616  df-fg 16617  df-cnfld 16620  df-zrh 16698  df-zn 16701  df-top 16879  df-bases 16881  df-topon 16882  df-topsp 16883  df-cld 16999  df-ntr 17000  df-cls 17001  df-nei 17078  df-lp 17116  df-perf 17117  df-cn 17206  df-cnp 17207  df-haus 17294  df-tx 17508  df-hmeo 17701  df-fil 17792  df-fm 17884  df-flim 17885  df-flf 17886  df-xms 18252  df-ms 18253  df-tms 18254  df-cncf 18772  df-limc 19613  df-dv 19614  df-log 20314  df-cxp 20315  df-dchr 20877
  Copyright terms: Public domain W3C validator