MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dcomex Unicode version

Theorem dcomex 8260
Description: The Axiom of Dependent Choice implies Infinity, the way we have stated it. Thus, we have Inf+AC implies DC and DC implies Inf, but AC does not imply Inf. (Contributed by Mario Carneiro, 25-Jan-2013.)
Assertion
Ref Expression
dcomex  |-  om  e.  _V

Proof of Theorem dcomex
Dummy variables  t 
s  x  f  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 4346 . . 3  |-  { <. 1o ,  1o >. }  e.  _V
2 1on 6667 . . . . . . . . . 10  |-  1o  e.  On
32elexi 2908 . . . . . . . . 9  |-  1o  e.  _V
43, 3fvsn 5865 . . . . . . . 8  |-  ( {
<. 1o ,  1o >. } `
 1o )  =  1o
53, 3funsn 5439 . . . . . . . . 9  |-  Fun  { <. 1o ,  1o >. }
63snid 3784 . . . . . . . . . 10  |-  1o  e.  { 1o }
73dmsnop 5284 . . . . . . . . . 10  |-  dom  { <. 1o ,  1o >. }  =  { 1o }
86, 7eleqtrri 2460 . . . . . . . . 9  |-  1o  e.  dom  { <. 1o ,  1o >. }
9 funbrfvb 5708 . . . . . . . . 9  |-  ( ( Fun  { <. 1o ,  1o >. }  /\  1o  e.  dom  { <. 1o ,  1o >. } )  -> 
( ( { <. 1o ,  1o >. } `  1o )  =  1o  <->  1o { <. 1o ,  1o >. } 1o ) )
105, 8, 9mp2an 654 . . . . . . . 8  |-  ( ( { <. 1o ,  1o >. } `  1o )  =  1o  <->  1o { <. 1o ,  1o >. } 1o )
114, 10mpbi 200 . . . . . . 7  |-  1o { <. 1o ,  1o >. } 1o
12 breq12 4158 . . . . . . . 8  |-  ( ( s  =  1o  /\  t  =  1o )  ->  ( s { <. 1o ,  1o >. } t  <-> 
1o { <. 1o ,  1o >. } 1o ) )
133, 3, 12spc2ev 2987 . . . . . . 7  |-  ( 1o { <. 1o ,  1o >. } 1o  ->  E. s E. t  s { <. 1o ,  1o >. } t )
1411, 13ax-mp 8 . . . . . 6  |-  E. s E. t  s { <. 1o ,  1o >. } t
15 breq 4155 . . . . . . 7  |-  ( x  =  { <. 1o ,  1o >. }  ->  (
s x t  <->  s { <. 1o ,  1o >. } t ) )
16152exbidv 1635 . . . . . 6  |-  ( x  =  { <. 1o ,  1o >. }  ->  ( E. s E. t  s x t  <->  E. s E. t  s { <. 1o ,  1o >. } t ) )
1714, 16mpbiri 225 . . . . 5  |-  ( x  =  { <. 1o ,  1o >. }  ->  E. s E. t  s x
t )
18 ssid 3310 . . . . . . 7  |-  { 1o }  C_  { 1o }
193rnsnop 5290 . . . . . . 7  |-  ran  { <. 1o ,  1o >. }  =  { 1o }
2018, 19, 73sstr4i 3330 . . . . . 6  |-  ran  { <. 1o ,  1o >. } 
C_  dom  { <. 1o ,  1o >. }
21 rneq 5035 . . . . . . 7  |-  ( x  =  { <. 1o ,  1o >. }  ->  ran  x  =  ran  { <. 1o ,  1o >. } )
22 dmeq 5010 . . . . . . 7  |-  ( x  =  { <. 1o ,  1o >. }  ->  dom  x  =  dom  { <. 1o ,  1o >. } )
2321, 22sseq12d 3320 . . . . . 6  |-  ( x  =  { <. 1o ,  1o >. }  ->  ( ran  x  C_  dom  x  <->  ran  { <. 1o ,  1o >. }  C_  dom  { <. 1o ,  1o >. } ) )
2420, 23mpbiri 225 . . . . 5  |-  ( x  =  { <. 1o ,  1o >. }  ->  ran  x  C_  dom  x )
25 pm5.5 327 . . . . 5  |-  ( ( E. s E. t 
s x t  /\  ran  x  C_  dom  x )  ->  ( ( ( E. s E. t 
s x t  /\  ran  x  C_  dom  x )  ->  E. f A. n  e.  om  ( f `  n ) x ( f `  suc  n
) )  <->  E. f A. n  e.  om  ( f `  n
) x ( f `
 suc  n )
) )
2617, 24, 25syl2anc 643 . . . 4  |-  ( x  =  { <. 1o ,  1o >. }  ->  (
( ( E. s E. t  s x
t  /\  ran  x  C_  dom  x )  ->  E. f A. n  e.  om  ( f `  n
) x ( f `
 suc  n )
)  <->  E. f A. n  e.  om  ( f `  n ) x ( f `  suc  n
) ) )
27 breq 4155 . . . . . 6  |-  ( x  =  { <. 1o ,  1o >. }  ->  (
( f `  n
) x ( f `
 suc  n )  <->  ( f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n ) ) )
2827ralbidv 2669 . . . . 5  |-  ( x  =  { <. 1o ,  1o >. }  ->  ( A. n  e.  om  ( f `  n
) x ( f `
 suc  n )  <->  A. n  e.  om  (
f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n ) ) )
2928exbidv 1633 . . . 4  |-  ( x  =  { <. 1o ,  1o >. }  ->  ( E. f A. n  e. 
om  ( f `  n ) x ( f `  suc  n
)  <->  E. f A. n  e.  om  ( f `  n ) { <. 1o ,  1o >. }  (
f `  suc  n ) ) )
3026, 29bitrd 245 . . 3  |-  ( x  =  { <. 1o ,  1o >. }  ->  (
( ( E. s E. t  s x
t  /\  ran  x  C_  dom  x )  ->  E. f A. n  e.  om  ( f `  n
) x ( f `
 suc  n )
)  <->  E. f A. n  e.  om  ( f `  n ) { <. 1o ,  1o >. }  (
f `  suc  n ) ) )
31 ax-dc 8259 . . 3  |-  ( ( E. s E. t 
s x t  /\  ran  x  C_  dom  x )  ->  E. f A. n  e.  om  ( f `  n ) x ( f `  suc  n
) )
321, 30, 31vtocl 2949 . 2  |-  E. f A. n  e.  om  ( f `  n
) { <. 1o ,  1o >. }  ( f `
 suc  n )
33 1n0 6675 . . . . . . . 8  |-  1o  =/=  (/)
34 df-br 4154 . . . . . . . . 9  |-  ( ( f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n )  <->  <. ( f `
 n ) ,  ( f `  suc  n ) >.  e.  { <. 1o ,  1o >. } )
35 elsni 3781 . . . . . . . . . 10  |-  ( <.
( f `  n
) ,  ( f `
 suc  n ) >.  e.  { <. 1o ,  1o >. }  ->  <. (
f `  n ) ,  ( f `  suc  n ) >.  =  <. 1o ,  1o >. )
36 fvex 5682 . . . . . . . . . . 11  |-  ( f `
 n )  e. 
_V
37 fvex 5682 . . . . . . . . . . 11  |-  ( f `
 suc  n )  e.  _V
3836, 37opth1 4375 . . . . . . . . . 10  |-  ( <.
( f `  n
) ,  ( f `
 suc  n ) >.  =  <. 1o ,  1o >.  ->  ( f `  n )  =  1o )
3935, 38syl 16 . . . . . . . . 9  |-  ( <.
( f `  n
) ,  ( f `
 suc  n ) >.  e.  { <. 1o ,  1o >. }  ->  (
f `  n )  =  1o )
4034, 39sylbi 188 . . . . . . . 8  |-  ( ( f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n )  ->  (
f `  n )  =  1o )
41 tz6.12i 5691 . . . . . . . 8  |-  ( 1o  =/=  (/)  ->  ( (
f `  n )  =  1o  ->  n f 1o ) )
4233, 40, 41mpsyl 61 . . . . . . 7  |-  ( ( f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n )  ->  n
f 1o )
43 vex 2902 . . . . . . . 8  |-  n  e. 
_V
4443, 3breldm 5014 . . . . . . 7  |-  ( n f 1o  ->  n  e.  dom  f )
4542, 44syl 16 . . . . . 6  |-  ( ( f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n )  ->  n  e.  dom  f )
4645ralimi 2724 . . . . 5  |-  ( A. n  e.  om  (
f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n )  ->  A. n  e.  om  n  e.  dom  f )
47 dfss3 3281 . . . . 5  |-  ( om  C_  dom  f  <->  A. n  e.  om  n  e.  dom  f )
4846, 47sylibr 204 . . . 4  |-  ( A. n  e.  om  (
f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n )  ->  om  C_  dom  f )
49 vex 2902 . . . . . 6  |-  f  e. 
_V
5049dmex 5072 . . . . 5  |-  dom  f  e.  _V
5150ssex 4288 . . . 4  |-  ( om  C_  dom  f  ->  om  e.  _V )
5248, 51syl 16 . . 3  |-  ( A. n  e.  om  (
f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n )  ->  om  e.  _V )
5352exlimiv 1641 . 2  |-  ( E. f A. n  e. 
om  ( f `  n ) { <. 1o ,  1o >. }  (
f `  suc  n )  ->  om  e.  _V )
5432, 53ax-mp 8 1  |-  om  e.  _V
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717    =/= wne 2550   A.wral 2649   _Vcvv 2899    C_ wss 3263   (/)c0 3571   {csn 3757   <.cop 3760   class class class wbr 4153   Oncon0 4522   suc csuc 4524   omcom 4785   dom cdm 4818   ran crn 4819   Fun wfun 5388   ` cfv 5394   1oc1o 6653
This theorem is referenced by:  axdc2lem  8261  axdc3lem  8263  axdc4lem  8268  axcclem  8270
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344  ax-un 4641  ax-dc 8259
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-suc 4528  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-iota 5358  df-fun 5396  df-fn 5397  df-fv 5402  df-1o 6660
  Copyright terms: Public domain W3C validator