MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dcubic2 Unicode version

Theorem dcubic2 20156
Description: Reverse direction of dcubic 20158. Given a solution  U to the "substitution" quadratic equation  X  =  U  -  M  /  U, show that  X is in the desired form. (Contributed by Mario Carneiro, 25-Apr-2015.)
Hypotheses
Ref Expression
dcubic.c  |-  ( ph  ->  P  e.  CC )
dcubic.d  |-  ( ph  ->  Q  e.  CC )
dcubic.x  |-  ( ph  ->  X  e.  CC )
dcubic.t  |-  ( ph  ->  T  e.  CC )
dcubic.3  |-  ( ph  ->  ( T ^ 3 )  =  ( G  -  N ) )
dcubic.g  |-  ( ph  ->  G  e.  CC )
dcubic.2  |-  ( ph  ->  ( G ^ 2 )  =  ( ( N ^ 2 )  +  ( M ^
3 ) ) )
dcubic.m  |-  ( ph  ->  M  =  ( P  /  3 ) )
dcubic.n  |-  ( ph  ->  N  =  ( Q  /  2 ) )
dcubic.0  |-  ( ph  ->  T  =/=  0 )
dcubic2.u  |-  ( ph  ->  U  e.  CC )
dcubic2.z  |-  ( ph  ->  U  =/=  0 )
dcubic2.2  |-  ( ph  ->  X  =  ( U  -  ( M  /  U ) ) )
dcubic2.x  |-  ( ph  ->  ( ( X ^
3 )  +  ( ( P  x.  X
)  +  Q ) )  =  0 )
Assertion
Ref Expression
dcubic2  |-  ( ph  ->  E. r  e.  CC  ( ( r ^
3 )  =  1  /\  X  =  ( ( r  x.  T
)  -  ( M  /  ( r  x.  T ) ) ) ) )
Distinct variable groups:    M, r    P, r    ph, r    Q, r    T, r    U, r    X, r
Allowed substitution hints:    G( r)    N( r)

Proof of Theorem dcubic2
StepHypRef Expression
1 dcubic2.u . . . . 5  |-  ( ph  ->  U  e.  CC )
2 dcubic.t . . . . 5  |-  ( ph  ->  T  e.  CC )
3 dcubic.0 . . . . 5  |-  ( ph  ->  T  =/=  0 )
41, 2, 3divcld 9552 . . . 4  |-  ( ph  ->  ( U  /  T
)  e.  CC )
54adantr 451 . . 3  |-  ( (
ph  /\  ( U ^ 3 )  =  ( G  -  N
) )  ->  ( U  /  T )  e.  CC )
6 3nn0 9999 . . . . . . 7  |-  3  e.  NN0
76a1i 10 . . . . . 6  |-  ( ph  ->  3  e.  NN0 )
81, 2, 3, 7expdivd 11275 . . . . 5  |-  ( ph  ->  ( ( U  /  T ) ^ 3 )  =  ( ( U ^ 3 )  /  ( T ^
3 ) ) )
98adantr 451 . . . 4  |-  ( (
ph  /\  ( U ^ 3 )  =  ( G  -  N
) )  ->  (
( U  /  T
) ^ 3 )  =  ( ( U ^ 3 )  / 
( T ^ 3 ) ) )
10 oveq1 5881 . . . . 5  |-  ( ( U ^ 3 )  =  ( G  -  N )  ->  (
( U ^ 3 )  /  ( T ^ 3 ) )  =  ( ( G  -  N )  / 
( T ^ 3 ) ) )
11 dcubic.3 . . . . . . 7  |-  ( ph  ->  ( T ^ 3 )  =  ( G  -  N ) )
1211oveq1d 5889 . . . . . 6  |-  ( ph  ->  ( ( T ^
3 )  /  ( T ^ 3 ) )  =  ( ( G  -  N )  / 
( T ^ 3 ) ) )
13 expcl 11137 . . . . . . . 8  |-  ( ( T  e.  CC  /\  3  e.  NN0 )  -> 
( T ^ 3 )  e.  CC )
142, 6, 13sylancl 643 . . . . . . 7  |-  ( ph  ->  ( T ^ 3 )  e.  CC )
156nn0zi 10064 . . . . . . . . 9  |-  3  e.  ZZ
1615a1i 10 . . . . . . . 8  |-  ( ph  ->  3  e.  ZZ )
172, 3, 16expne0d 11267 . . . . . . 7  |-  ( ph  ->  ( T ^ 3 )  =/=  0 )
1814, 17dividd 9550 . . . . . 6  |-  ( ph  ->  ( ( T ^
3 )  /  ( T ^ 3 ) )  =  1 )
1912, 18eqtr3d 2330 . . . . 5  |-  ( ph  ->  ( ( G  -  N )  /  ( T ^ 3 ) )  =  1 )
2010, 19sylan9eqr 2350 . . . 4  |-  ( (
ph  /\  ( U ^ 3 )  =  ( G  -  N
) )  ->  (
( U ^ 3 )  /  ( T ^ 3 ) )  =  1 )
219, 20eqtrd 2328 . . 3  |-  ( (
ph  /\  ( U ^ 3 )  =  ( G  -  N
) )  ->  (
( U  /  T
) ^ 3 )  =  1 )
22 dcubic2.2 . . . . 5  |-  ( ph  ->  X  =  ( U  -  ( M  /  U ) ) )
231, 2, 3divcan1d 9553 . . . . . 6  |-  ( ph  ->  ( ( U  /  T )  x.  T
)  =  U )
2423oveq2d 5890 . . . . . 6  |-  ( ph  ->  ( M  /  (
( U  /  T
)  x.  T ) )  =  ( M  /  U ) )
2523, 24oveq12d 5892 . . . . 5  |-  ( ph  ->  ( ( ( U  /  T )  x.  T )  -  ( M  /  ( ( U  /  T )  x.  T ) ) )  =  ( U  -  ( M  /  U
) ) )
2622, 25eqtr4d 2331 . . . 4  |-  ( ph  ->  X  =  ( ( ( U  /  T
)  x.  T )  -  ( M  / 
( ( U  /  T )  x.  T
) ) ) )
2726adantr 451 . . 3  |-  ( (
ph  /\  ( U ^ 3 )  =  ( G  -  N
) )  ->  X  =  ( ( ( U  /  T )  x.  T )  -  ( M  /  (
( U  /  T
)  x.  T ) ) ) )
28 oveq1 5881 . . . . . 6  |-  ( r  =  ( U  /  T )  ->  (
r ^ 3 )  =  ( ( U  /  T ) ^
3 ) )
2928eqeq1d 2304 . . . . 5  |-  ( r  =  ( U  /  T )  ->  (
( r ^ 3 )  =  1  <->  (
( U  /  T
) ^ 3 )  =  1 ) )
30 oveq1 5881 . . . . . . 7  |-  ( r  =  ( U  /  T )  ->  (
r  x.  T )  =  ( ( U  /  T )  x.  T ) )
3130oveq2d 5890 . . . . . . 7  |-  ( r  =  ( U  /  T )  ->  ( M  /  ( r  x.  T ) )  =  ( M  /  (
( U  /  T
)  x.  T ) ) )
3230, 31oveq12d 5892 . . . . . 6  |-  ( r  =  ( U  /  T )  ->  (
( r  x.  T
)  -  ( M  /  ( r  x.  T ) ) )  =  ( ( ( U  /  T )  x.  T )  -  ( M  /  (
( U  /  T
)  x.  T ) ) ) )
3332eqeq2d 2307 . . . . 5  |-  ( r  =  ( U  /  T )  ->  ( X  =  ( (
r  x.  T )  -  ( M  / 
( r  x.  T
) ) )  <->  X  =  ( ( ( U  /  T )  x.  T )  -  ( M  /  ( ( U  /  T )  x.  T ) ) ) ) )
3429, 33anbi12d 691 . . . 4  |-  ( r  =  ( U  /  T )  ->  (
( ( r ^
3 )  =  1  /\  X  =  ( ( r  x.  T
)  -  ( M  /  ( r  x.  T ) ) ) )  <->  ( ( ( U  /  T ) ^ 3 )  =  1  /\  X  =  ( ( ( U  /  T )  x.  T )  -  ( M  /  ( ( U  /  T )  x.  T ) ) ) ) ) )
3534rspcev 2897 . . 3  |-  ( ( ( U  /  T
)  e.  CC  /\  ( ( ( U  /  T ) ^
3 )  =  1  /\  X  =  ( ( ( U  /  T )  x.  T
)  -  ( M  /  ( ( U  /  T )  x.  T ) ) ) ) )  ->  E. r  e.  CC  ( ( r ^ 3 )  =  1  /\  X  =  ( ( r  x.  T )  -  ( M  /  ( r  x.  T ) ) ) ) )
365, 21, 27, 35syl12anc 1180 . 2  |-  ( (
ph  /\  ( U ^ 3 )  =  ( G  -  N
) )  ->  E. r  e.  CC  ( ( r ^ 3 )  =  1  /\  X  =  ( ( r  x.  T )  -  ( M  /  ( r  x.  T ) ) ) ) )
37 dcubic.m . . . . . . . 8  |-  ( ph  ->  M  =  ( P  /  3 ) )
38 dcubic.c . . . . . . . . 9  |-  ( ph  ->  P  e.  CC )
39 3cn 9834 . . . . . . . . . 10  |-  3  e.  CC
4039a1i 10 . . . . . . . . 9  |-  ( ph  ->  3  e.  CC )
41 3ne0 9847 . . . . . . . . . 10  |-  3  =/=  0
4241a1i 10 . . . . . . . . 9  |-  ( ph  ->  3  =/=  0 )
4338, 40, 42divcld 9552 . . . . . . . 8  |-  ( ph  ->  ( P  /  3
)  e.  CC )
4437, 43eqeltrd 2370 . . . . . . 7  |-  ( ph  ->  M  e.  CC )
45 dcubic2.z . . . . . . 7  |-  ( ph  ->  U  =/=  0 )
4644, 1, 45divcld 9552 . . . . . 6  |-  ( ph  ->  ( M  /  U
)  e.  CC )
4746negcld 9160 . . . . 5  |-  ( ph  -> 
-u ( M  /  U )  e.  CC )
4847, 2, 3divcld 9552 . . . 4  |-  ( ph  ->  ( -u ( M  /  U )  /  T )  e.  CC )
4948adantr 451 . . 3  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  -> 
( -u ( M  /  U )  /  T
)  e.  CC )
5047, 2, 3, 7expdivd 11275 . . . . . 6  |-  ( ph  ->  ( ( -u ( M  /  U )  /  T ) ^ 3 )  =  ( (
-u ( M  /  U ) ^ 3 )  /  ( T ^ 3 ) ) )
5144, 1, 45divnegd 9565 . . . . . . . . 9  |-  ( ph  -> 
-u ( M  /  U )  =  (
-u M  /  U
) )
5251oveq1d 5889 . . . . . . . 8  |-  ( ph  ->  ( -u ( M  /  U ) ^
3 )  =  ( ( -u M  /  U ) ^ 3 ) )
5344negcld 9160 . . . . . . . . 9  |-  ( ph  -> 
-u M  e.  CC )
5453, 1, 45, 7expdivd 11275 . . . . . . . 8  |-  ( ph  ->  ( ( -u M  /  U ) ^ 3 )  =  ( (
-u M ^ 3 )  /  ( U ^ 3 ) ) )
5511oveq2d 5890 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( G  +  N )  x.  ( T ^ 3 ) )  =  ( ( G  +  N )  x.  ( G  -  N
) ) )
56 dcubic.g . . . . . . . . . . . . . . 15  |-  ( ph  ->  G  e.  CC )
57 dcubic.n . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  =  ( Q  /  2 ) )
58 dcubic.d . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Q  e.  CC )
5958halfcld 9972 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Q  /  2
)  e.  CC )
6057, 59eqeltrd 2370 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  CC )
61 subsq 11226 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  CC  /\  N  e.  CC )  ->  ( ( G ^
2 )  -  ( N ^ 2 ) )  =  ( ( G  +  N )  x.  ( G  -  N
) ) )
6256, 60, 61syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( G ^
2 )  -  ( N ^ 2 ) )  =  ( ( G  +  N )  x.  ( G  -  N
) ) )
6355, 62eqtr4d 2331 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( G  +  N )  x.  ( T ^ 3 ) )  =  ( ( G ^ 2 )  -  ( N ^ 2 ) ) )
64 dcubic.2 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( G ^ 2 )  =  ( ( N ^ 2 )  +  ( M ^
3 ) ) )
6564oveq1d 5889 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( G ^
2 )  -  ( N ^ 2 ) )  =  ( ( ( N ^ 2 )  +  ( M ^
3 ) )  -  ( N ^ 2 ) ) )
6660sqcld 11259 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( N ^ 2 )  e.  CC )
67 expcl 11137 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  CC  /\  3  e.  NN0 )  -> 
( M ^ 3 )  e.  CC )
6844, 6, 67sylancl 643 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M ^ 3 )  e.  CC )
6966, 68pncan2d 9175 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( N ^ 2 )  +  ( M ^ 3 ) )  -  ( N ^ 2 ) )  =  ( M ^
3 ) )
7063, 65, 693eqtrd 2332 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( G  +  N )  x.  ( T ^ 3 ) )  =  ( M ^
3 ) )
7170negeqd 9062 . . . . . . . . . . 11  |-  ( ph  -> 
-u ( ( G  +  N )  x.  ( T ^ 3 ) )  =  -u ( M ^ 3 ) )
7256, 60addcld 8870 . . . . . . . . . . . 12  |-  ( ph  ->  ( G  +  N
)  e.  CC )
7372, 14mulneg1d 9248 . . . . . . . . . . 11  |-  ( ph  ->  ( -u ( G  +  N )  x.  ( T ^ 3 ) )  =  -u ( ( G  +  N )  x.  ( T ^ 3 ) ) )
74 3nn 9894 . . . . . . . . . . . . 13  |-  3  e.  NN
7574a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  3  e.  NN )
76 2nn 9893 . . . . . . . . . . . . . 14  |-  2  e.  NN
77 1nn0 9997 . . . . . . . . . . . . . 14  |-  1  e.  NN0
78 1nn 9773 . . . . . . . . . . . . . 14  |-  1  e.  NN
79 2cn 9832 . . . . . . . . . . . . . . . . 17  |-  2  e.  CC
8079mulid1i 8855 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  1 )  =  2
8180oveq1i 5884 . . . . . . . . . . . . . . 15  |-  ( ( 2  x.  1 )  +  1 )  =  ( 2  +  1 )
82 2p1e3 9863 . . . . . . . . . . . . . . 15  |-  ( 2  +  1 )  =  3
8381, 82eqtri 2316 . . . . . . . . . . . . . 14  |-  ( ( 2  x.  1 )  +  1 )  =  3
84 1lt2 9902 . . . . . . . . . . . . . 14  |-  1  <  2
8576, 77, 78, 83, 84ndvdsi 12625 . . . . . . . . . . . . 13  |-  -.  2  ||  3
8685a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  -.  2  ||  3
)
87 oexpneg 12606 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  3  e.  NN  /\  -.  2  ||  3 )  -> 
( -u M ^ 3 )  =  -u ( M ^ 3 ) )
8844, 75, 86, 87syl3anc 1182 . . . . . . . . . . 11  |-  ( ph  ->  ( -u M ^
3 )  =  -u ( M ^ 3 ) )
8971, 73, 883eqtr4d 2338 . . . . . . . . . 10  |-  ( ph  ->  ( -u ( G  +  N )  x.  ( T ^ 3 ) )  =  (
-u M ^ 3 ) )
9089oveq1d 5889 . . . . . . . . 9  |-  ( ph  ->  ( ( -u ( G  +  N )  x.  ( T ^ 3 ) )  /  ( U ^ 3 ) )  =  ( ( -u M ^ 3 )  / 
( U ^ 3 ) ) )
9172negcld 9160 . . . . . . . . . 10  |-  ( ph  -> 
-u ( G  +  N )  e.  CC )
92 expcl 11137 . . . . . . . . . . 11  |-  ( ( U  e.  CC  /\  3  e.  NN0 )  -> 
( U ^ 3 )  e.  CC )
931, 6, 92sylancl 643 . . . . . . . . . 10  |-  ( ph  ->  ( U ^ 3 )  e.  CC )
941, 45, 16expne0d 11267 . . . . . . . . . 10  |-  ( ph  ->  ( U ^ 3 )  =/=  0 )
9591, 14, 93, 94div23d 9589 . . . . . . . . 9  |-  ( ph  ->  ( ( -u ( G  +  N )  x.  ( T ^ 3 ) )  /  ( U ^ 3 ) )  =  ( ( -u ( G  +  N
)  /  ( U ^ 3 ) )  x.  ( T ^
3 ) ) )
9690, 95eqtr3d 2330 . . . . . . . 8  |-  ( ph  ->  ( ( -u M ^ 3 )  / 
( U ^ 3 ) )  =  ( ( -u ( G  +  N )  / 
( U ^ 3 ) )  x.  ( T ^ 3 ) ) )
9752, 54, 963eqtrd 2332 . . . . . . 7  |-  ( ph  ->  ( -u ( M  /  U ) ^
3 )  =  ( ( -u ( G  +  N )  / 
( U ^ 3 ) )  x.  ( T ^ 3 ) ) )
9897oveq1d 5889 . . . . . 6  |-  ( ph  ->  ( ( -u ( M  /  U ) ^
3 )  /  ( T ^ 3 ) )  =  ( ( (
-u ( G  +  N )  /  ( U ^ 3 ) )  x.  ( T ^
3 ) )  / 
( T ^ 3 ) ) )
9991, 93, 94divcld 9552 . . . . . . 7  |-  ( ph  ->  ( -u ( G  +  N )  / 
( U ^ 3 ) )  e.  CC )
10099, 14, 17divcan4d 9558 . . . . . 6  |-  ( ph  ->  ( ( ( -u ( G  +  N
)  /  ( U ^ 3 ) )  x.  ( T ^
3 ) )  / 
( T ^ 3 ) )  =  (
-u ( G  +  N )  /  ( U ^ 3 ) ) )
10150, 98, 1003eqtrd 2332 . . . . 5  |-  ( ph  ->  ( ( -u ( M  /  U )  /  T ) ^ 3 )  =  ( -u ( G  +  N
)  /  ( U ^ 3 ) ) )
102101adantr 451 . . . 4  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  -> 
( ( -u ( M  /  U )  /  T ) ^ 3 )  =  ( -u ( G  +  N
)  /  ( U ^ 3 ) ) )
103 oveq1 5881 . . . . . 6  |-  ( ( U ^ 3 )  =  -u ( G  +  N )  ->  (
( U ^ 3 )  /  ( U ^ 3 ) )  =  ( -u ( G  +  N )  /  ( U ^
3 ) ) )
104103eqcomd 2301 . . . . 5  |-  ( ( U ^ 3 )  =  -u ( G  +  N )  ->  ( -u ( G  +  N
)  /  ( U ^ 3 ) )  =  ( ( U ^ 3 )  / 
( U ^ 3 ) ) )
10593, 94dividd 9550 . . . . 5  |-  ( ph  ->  ( ( U ^
3 )  /  ( U ^ 3 ) )  =  1 )
106104, 105sylan9eqr 2350 . . . 4  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  -> 
( -u ( G  +  N )  /  ( U ^ 3 ) )  =  1 )
107102, 106eqtrd 2328 . . 3  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  -> 
( ( -u ( M  /  U )  /  T ) ^ 3 )  =  1 )
10846, 1neg2subd 9190 . . . . . 6  |-  ( ph  ->  ( -u ( M  /  U )  -  -u U )  =  ( U  -  ( M  /  U ) ) )
10922, 108eqtr4d 2331 . . . . 5  |-  ( ph  ->  X  =  ( -u ( M  /  U
)  -  -u U
) )
110109adantr 451 . . . 4  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  ->  X  =  ( -u ( M  /  U )  -  -u U ) )
11147, 2, 3divcan1d 9553 . . . . . 6  |-  ( ph  ->  ( ( -u ( M  /  U )  /  T )  x.  T
)  =  -u ( M  /  U ) )
112111adantr 451 . . . . 5  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  -> 
( ( -u ( M  /  U )  /  T )  x.  T
)  =  -u ( M  /  U ) )
11344, 1, 45divneg2d 9566 . . . . . . . . 9  |-  ( ph  -> 
-u ( M  /  U )  =  ( M  /  -u U
) )
114111, 113eqtrd 2328 . . . . . . . 8  |-  ( ph  ->  ( ( -u ( M  /  U )  /  T )  x.  T
)  =  ( M  /  -u U ) )
115114adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  -> 
( ( -u ( M  /  U )  /  T )  x.  T
)  =  ( M  /  -u U ) )
116115oveq2d 5890 . . . . . 6  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  -> 
( M  /  (
( -u ( M  /  U )  /  T
)  x.  T ) )  =  ( M  /  ( M  /  -u U ) ) )
11744adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  ->  M  e.  CC )
1181negcld 9160 . . . . . . . 8  |-  ( ph  -> 
-u U  e.  CC )
119118adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  ->  -u U  e.  CC )
12073, 71eqtrd 2328 . . . . . . . . . 10  |-  ( ph  ->  ( -u ( G  +  N )  x.  ( T ^ 3 ) )  =  -u ( M ^ 3 ) )
121120adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  -> 
( -u ( G  +  N )  x.  ( T ^ 3 ) )  =  -u ( M ^
3 ) )
12291adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  ->  -u ( G  +  N
)  e.  CC )
12314adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  -> 
( T ^ 3 )  e.  CC )
124 simpr 447 . . . . . . . . . . 11  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  -> 
( U ^ 3 )  =  -u ( G  +  N )
)
12594adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  -> 
( U ^ 3 )  =/=  0 )
126124, 125eqnetrrd 2479 . . . . . . . . . 10  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  ->  -u ( G  +  N
)  =/=  0 )
12717adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  -> 
( T ^ 3 )  =/=  0 )
128122, 123, 126, 127mulne0d 9436 . . . . . . . . 9  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  -> 
( -u ( G  +  N )  x.  ( T ^ 3 ) )  =/=  0 )
129121, 128eqnetrrd 2479 . . . . . . . 8  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  ->  -u ( M ^ 3 )  =/=  0 )
130 oveq1 5881 . . . . . . . . . . . 12  |-  ( M  =  0  ->  ( M ^ 3 )  =  ( 0 ^ 3 ) )
131 0exp 11153 . . . . . . . . . . . . 13  |-  ( 3  e.  NN  ->  (
0 ^ 3 )  =  0 )
13274, 131ax-mp 8 . . . . . . . . . . . 12  |-  ( 0 ^ 3 )  =  0
133130, 132syl6eq 2344 . . . . . . . . . . 11  |-  ( M  =  0  ->  ( M ^ 3 )  =  0 )
134133negeqd 9062 . . . . . . . . . 10  |-  ( M  =  0  ->  -u ( M ^ 3 )  = 
-u 0 )
135 neg0 9109 . . . . . . . . . 10  |-  -u 0  =  0
136134, 135syl6eq 2344 . . . . . . . . 9  |-  ( M  =  0  ->  -u ( M ^ 3 )  =  0 )
137136necon3i 2498 . . . . . . . 8  |-  ( -u ( M ^ 3 )  =/=  0  ->  M  =/=  0 )
138129, 137syl 15 . . . . . . 7  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  ->  M  =/=  0 )
1391, 45negne0d 9171 . . . . . . . 8  |-  ( ph  -> 
-u U  =/=  0
)
140139adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  ->  -u U  =/=  0 )
141117, 119, 138, 140ddcand 9572 . . . . . 6  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  -> 
( M  /  ( M  /  -u U ) )  =  -u U )
142116, 141eqtrd 2328 . . . . 5  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  -> 
( M  /  (
( -u ( M  /  U )  /  T
)  x.  T ) )  =  -u U
)
143112, 142oveq12d 5892 . . . 4  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  -> 
( ( ( -u ( M  /  U
)  /  T )  x.  T )  -  ( M  /  (
( -u ( M  /  U )  /  T
)  x.  T ) ) )  =  (
-u ( M  /  U )  -  -u U
) )
144110, 143eqtr4d 2331 . . 3  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  ->  X  =  ( (
( -u ( M  /  U )  /  T
)  x.  T )  -  ( M  / 
( ( -u ( M  /  U )  /  T )  x.  T
) ) ) )
145 oveq1 5881 . . . . . 6  |-  ( r  =  ( -u ( M  /  U )  /  T )  ->  (
r ^ 3 )  =  ( ( -u ( M  /  U
)  /  T ) ^ 3 ) )
146145eqeq1d 2304 . . . . 5  |-  ( r  =  ( -u ( M  /  U )  /  T )  ->  (
( r ^ 3 )  =  1  <->  (
( -u ( M  /  U )  /  T
) ^ 3 )  =  1 ) )
147 oveq1 5881 . . . . . . 7  |-  ( r  =  ( -u ( M  /  U )  /  T )  ->  (
r  x.  T )  =  ( ( -u ( M  /  U
)  /  T )  x.  T ) )
148147oveq2d 5890 . . . . . . 7  |-  ( r  =  ( -u ( M  /  U )  /  T )  ->  ( M  /  ( r  x.  T ) )  =  ( M  /  (
( -u ( M  /  U )  /  T
)  x.  T ) ) )
149147, 148oveq12d 5892 . . . . . 6  |-  ( r  =  ( -u ( M  /  U )  /  T )  ->  (
( r  x.  T
)  -  ( M  /  ( r  x.  T ) ) )  =  ( ( (
-u ( M  /  U )  /  T
)  x.  T )  -  ( M  / 
( ( -u ( M  /  U )  /  T )  x.  T
) ) ) )
150149eqeq2d 2307 . . . . 5  |-  ( r  =  ( -u ( M  /  U )  /  T )  ->  ( X  =  ( (
r  x.  T )  -  ( M  / 
( r  x.  T
) ) )  <->  X  =  ( ( ( -u ( M  /  U
)  /  T )  x.  T )  -  ( M  /  (
( -u ( M  /  U )  /  T
)  x.  T ) ) ) ) )
151146, 150anbi12d 691 . . . 4  |-  ( r  =  ( -u ( M  /  U )  /  T )  ->  (
( ( r ^
3 )  =  1  /\  X  =  ( ( r  x.  T
)  -  ( M  /  ( r  x.  T ) ) ) )  <->  ( ( (
-u ( M  /  U )  /  T
) ^ 3 )  =  1  /\  X  =  ( ( (
-u ( M  /  U )  /  T
)  x.  T )  -  ( M  / 
( ( -u ( M  /  U )  /  T )  x.  T
) ) ) ) ) )
152151rspcev 2897 . . 3  |-  ( ( ( -u ( M  /  U )  /  T )  e.  CC  /\  ( ( ( -u ( M  /  U
)  /  T ) ^ 3 )  =  1  /\  X  =  ( ( ( -u ( M  /  U
)  /  T )  x.  T )  -  ( M  /  (
( -u ( M  /  U )  /  T
)  x.  T ) ) ) ) )  ->  E. r  e.  CC  ( ( r ^
3 )  =  1  /\  X  =  ( ( r  x.  T
)  -  ( M  /  ( r  x.  T ) ) ) ) )
15349, 107, 144, 152syl12anc 1180 . 2  |-  ( (
ph  /\  ( U ^ 3 )  = 
-u ( G  +  N ) )  ->  E. r  e.  CC  ( ( r ^
3 )  =  1  /\  X  =  ( ( r  x.  T
)  -  ( M  /  ( r  x.  T ) ) ) ) )
15493sqcld 11259 . . . . . . 7  |-  ( ph  ->  ( ( U ^
3 ) ^ 2 )  e.  CC )
155154mulid2d 8869 . . . . . 6  |-  ( ph  ->  ( 1  x.  (
( U ^ 3 ) ^ 2 ) )  =  ( ( U ^ 3 ) ^ 2 ) )
15658, 93mulcld 8871 . . . . . . 7  |-  ( ph  ->  ( Q  x.  ( U ^ 3 ) )  e.  CC )
157156, 68negsubd 9179 . . . . . 6  |-  ( ph  ->  ( ( Q  x.  ( U ^ 3 ) )  +  -u ( M ^ 3 ) )  =  ( ( Q  x.  ( U ^
3 ) )  -  ( M ^ 3 ) ) )
158155, 157oveq12d 5892 . . . . 5  |-  ( ph  ->  ( ( 1  x.  ( ( U ^
3 ) ^ 2 ) )  +  ( ( Q  x.  ( U ^ 3 ) )  +  -u ( M ^
3 ) ) )  =  ( ( ( U ^ 3 ) ^ 2 )  +  ( ( Q  x.  ( U ^ 3 ) )  -  ( M ^ 3 ) ) ) )
159 dcubic2.x . . . . . 6  |-  ( ph  ->  ( ( X ^
3 )  +  ( ( P  x.  X
)  +  Q ) )  =  0 )
160 dcubic.x . . . . . . 7  |-  ( ph  ->  X  e.  CC )
16138, 58, 160, 2, 11, 56, 64, 37, 57, 3, 1, 45, 22dcubic1lem 20155 . . . . . 6  |-  ( ph  ->  ( ( ( X ^ 3 )  +  ( ( P  x.  X )  +  Q
) )  =  0  <-> 
( ( ( U ^ 3 ) ^
2 )  +  ( ( Q  x.  ( U ^ 3 ) )  -  ( M ^
3 ) ) )  =  0 ) )
162159, 161mpbid 201 . . . . 5  |-  ( ph  ->  ( ( ( U ^ 3 ) ^
2 )  +  ( ( Q  x.  ( U ^ 3 ) )  -  ( M ^
3 ) ) )  =  0 )
163158, 162eqtrd 2328 . . . 4  |-  ( ph  ->  ( ( 1  x.  ( ( U ^
3 ) ^ 2 ) )  +  ( ( Q  x.  ( U ^ 3 ) )  +  -u ( M ^
3 ) ) )  =  0 )
164 ax-1cn 8811 . . . . . 6  |-  1  e.  CC
165164a1i 10 . . . . 5  |-  ( ph  ->  1  e.  CC )
166 ax-1ne0 8822 . . . . . 6  |-  1  =/=  0
167166a1i 10 . . . . 5  |-  ( ph  ->  1  =/=  0 )
16868negcld 9160 . . . . 5  |-  ( ph  -> 
-u ( M ^
3 )  e.  CC )
169 mulcl 8837 . . . . . 6  |-  ( ( 2  e.  CC  /\  G  e.  CC )  ->  ( 2  x.  G
)  e.  CC )
17079, 56, 169sylancr 644 . . . . 5  |-  ( ph  ->  ( 2  x.  G
)  e.  CC )
171 sqmul 11183 . . . . . . 7  |-  ( ( 2  e.  CC  /\  G  e.  CC )  ->  ( ( 2  x.  G ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( G ^
2 ) ) )
17279, 56, 171sylancr 644 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  G ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( G ^
2 ) ) )
17364oveq2d 5890 . . . . . 6  |-  ( ph  ->  ( ( 2 ^ 2 )  x.  ( G ^ 2 ) )  =  ( ( 2 ^ 2 )  x.  ( ( N ^
2 )  +  ( M ^ 3 ) ) ) )
17479sqcli 11200 . . . . . . . . 9  |-  ( 2 ^ 2 )  e.  CC
175 mulcl 8837 . . . . . . . . 9  |-  ( ( ( 2 ^ 2 )  e.  CC  /\  ( N ^ 2 )  e.  CC )  -> 
( ( 2 ^ 2 )  x.  ( N ^ 2 ) )  e.  CC )
176174, 66, 175sylancr 644 . . . . . . . 8  |-  ( ph  ->  ( ( 2 ^ 2 )  x.  ( N ^ 2 ) )  e.  CC )
177 mulcl 8837 . . . . . . . . 9  |-  ( ( ( 2 ^ 2 )  e.  CC  /\  ( M ^ 3 )  e.  CC )  -> 
( ( 2 ^ 2 )  x.  ( M ^ 3 ) )  e.  CC )
178174, 68, 177sylancr 644 . . . . . . . 8  |-  ( ph  ->  ( ( 2 ^ 2 )  x.  ( M ^ 3 ) )  e.  CC )
179176, 178subnegd 9180 . . . . . . 7  |-  ( ph  ->  ( ( ( 2 ^ 2 )  x.  ( N ^ 2 ) )  -  -u (
( 2 ^ 2 )  x.  ( M ^ 3 ) ) )  =  ( ( ( 2 ^ 2 )  x.  ( N ^ 2 ) )  +  ( ( 2 ^ 2 )  x.  ( M ^ 3 ) ) ) )
18057oveq2d 5890 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  N
)  =  ( 2  x.  ( Q  / 
2 ) ) )
18179a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  2  e.  CC )
182 2ne0 9845 . . . . . . . . . . . . 13  |-  2  =/=  0
183182a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  2  =/=  0 )
18458, 181, 183divcan2d 9554 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  ( Q  /  2 ) )  =  Q )
185180, 184eqtrd 2328 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  N
)  =  Q )
186185oveq1d 5889 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  N ) ^ 2 )  =  ( Q ^ 2 ) )
187 sqmul 11183 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  N  e.  CC )  ->  ( ( 2  x.  N ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( N ^
2 ) ) )
18879, 60, 187sylancr 644 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  N ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( N ^
2 ) ) )
189186, 188eqtr3d 2330 . . . . . . . 8  |-  ( ph  ->  ( Q ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( N ^
2 ) ) )
190168mulid2d 8869 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  x.  -u ( M ^ 3 ) )  =  -u ( M ^
3 ) )
191190oveq2d 5890 . . . . . . . . . 10  |-  ( ph  ->  ( 4  x.  (
1  x.  -u ( M ^ 3 ) ) )  =  ( 4  x.  -u ( M ^
3 ) ) )
192 4cn 9836 . . . . . . . . . . 11  |-  4  e.  CC
193 mulneg2 9233 . . . . . . . . . . 11  |-  ( ( 4  e.  CC  /\  ( M ^ 3 )  e.  CC )  -> 
( 4  x.  -u ( M ^ 3 ) )  =  -u ( 4  x.  ( M ^ 3 ) ) )
194192, 68, 193sylancr 644 . . . . . . . . . 10  |-  ( ph  ->  ( 4  x.  -u ( M ^ 3 ) )  =  -u ( 4  x.  ( M ^ 3 ) ) )
195191, 194eqtrd 2328 . . . . . . . . 9  |-  ( ph  ->  ( 4  x.  (
1  x.  -u ( M ^ 3 ) ) )  =  -u (
4  x.  ( M ^ 3 ) ) )
196 sq2 11215 . . . . . . . . . . 11  |-  ( 2 ^ 2 )  =  4
197196oveq1i 5884 . . . . . . . . . 10  |-  ( ( 2 ^ 2 )  x.  ( M ^
3 ) )  =  ( 4  x.  ( M ^ 3 ) )
198197negeqi 9061 . . . . . . . . 9  |-  -u (
( 2 ^ 2 )  x.  ( M ^ 3 ) )  =  -u ( 4  x.  ( M ^ 3 ) )
199195, 198syl6eqr 2346 . . . . . . . 8  |-  ( ph  ->  ( 4  x.  (
1  x.  -u ( M ^ 3 ) ) )  =  -u (
( 2 ^ 2 )  x.  ( M ^ 3 ) ) )
200189, 199oveq12d 5892 . . . . . . 7  |-  ( ph  ->  ( ( Q ^
2 )  -  (
4  x.  ( 1  x.  -u ( M ^
3 ) ) ) )  =  ( ( ( 2 ^ 2 )  x.  ( N ^ 2 ) )  -  -u ( ( 2 ^ 2 )  x.  ( M ^ 3 ) ) ) )
201174a1i 10 . . . . . . . 8  |-  ( ph  ->  ( 2 ^ 2 )  e.  CC )
202201, 66, 68adddid 8875 . . . . . . 7  |-  ( ph  ->  ( ( 2 ^ 2 )  x.  (
( N ^ 2 )  +  ( M ^ 3 ) ) )  =  ( ( ( 2 ^ 2 )  x.  ( N ^ 2 ) )  +  ( ( 2 ^ 2 )  x.  ( M ^ 3 ) ) ) )
203179, 200, 2023eqtr4rd 2339 . . . . . 6  |-  ( ph  ->  ( ( 2 ^ 2 )  x.  (
( N ^ 2 )  +  ( M ^ 3 ) ) )  =  ( ( Q ^ 2 )  -  ( 4  x.  ( 1  x.  -u ( M ^ 3 ) ) ) ) )
204172, 173, 2033eqtrd 2332 . . . . 5  |-  ( ph  ->  ( ( 2  x.  G ) ^ 2 )  =  ( ( Q ^ 2 )  -  ( 4  x.  ( 1  x.  -u ( M ^ 3 ) ) ) ) )
205165, 167, 58, 168, 93, 170, 204quad2 20151 . . . 4  |-  ( ph  ->  ( ( ( 1  x.  ( ( U ^ 3 ) ^
2 ) )  +  ( ( Q  x.  ( U ^ 3 ) )  +  -u ( M ^ 3 ) ) )  =  0  <->  (
( U ^ 3 )  =  ( (
-u Q  +  ( 2  x.  G ) )  /  ( 2  x.  1 ) )  \/  ( U ^
3 )  =  ( ( -u Q  -  ( 2  x.  G
) )  /  (
2  x.  1 ) ) ) ) )
206163, 205mpbid 201 . . 3  |-  ( ph  ->  ( ( U ^
3 )  =  ( ( -u Q  +  ( 2  x.  G
) )  /  (
2  x.  1 ) )  \/  ( U ^ 3 )  =  ( ( -u Q  -  ( 2  x.  G ) )  / 
( 2  x.  1 ) ) ) )
20780oveq2i 5885 . . . . . 6  |-  ( (
-u Q  +  ( 2  x.  G ) )  /  ( 2  x.  1 ) )  =  ( ( -u Q  +  ( 2  x.  G ) )  /  2 )
20858negcld 9160 . . . . . . . 8  |-  ( ph  -> 
-u Q  e.  CC )
209208, 170, 181, 183divdird 9590 . . . . . . 7  |-  ( ph  ->  ( ( -u Q  +  ( 2  x.  G ) )  / 
2 )  =  ( ( -u Q  / 
2 )  +  ( ( 2  x.  G
)  /  2 ) ) )
21057negeqd 9062 . . . . . . . . 9  |-  ( ph  -> 
-u N  =  -u ( Q  /  2
) )
21158, 181, 183divnegd 9565 . . . . . . . . 9  |-  ( ph  -> 
-u ( Q  / 
2 )  =  (
-u Q  /  2
) )
212210, 211eqtr2d 2329 . . . . . . . 8  |-  ( ph  ->  ( -u Q  / 
2 )  =  -u N )
21356, 181, 183divcan3d 9557 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  G )  /  2
)  =  G )
214212, 213oveq12d 5892 . . . . . . 7  |-  ( ph  ->  ( ( -u Q  /  2 )  +  ( ( 2  x.  G )  /  2
) )  =  (
-u N  +  G
) )
21560negcld 9160 . . . . . . . . 9  |-  ( ph  -> 
-u N  e.  CC )
216215, 56addcomd 9030 . . . . . . . 8  |-  ( ph  ->  ( -u N  +  G )  =  ( G  +  -u N
) )
21756, 60negsubd 9179 . . . . . . . 8  |-  ( ph  ->  ( G  +  -u N )  =  ( G  -  N ) )
218216, 217eqtrd 2328 . . . . . . 7  |-  ( ph  ->  ( -u N  +  G )  =  ( G  -  N ) )
219209, 214, 2183eqtrd 2332 . . . . . 6  |-  ( ph  ->  ( ( -u Q  +  ( 2  x.  G ) )  / 
2 )  =  ( G  -  N ) )
220207, 219syl5eq 2340 . . . . 5  |-  ( ph  ->  ( ( -u Q  +  ( 2  x.  G ) )  / 
( 2  x.  1 ) )  =  ( G  -  N ) )
221220eqeq2d 2307 . . . 4  |-  ( ph  ->  ( ( U ^
3 )  =  ( ( -u Q  +  ( 2  x.  G
) )  /  (
2  x.  1 ) )  <->  ( U ^
3 )  =  ( G  -  N ) ) )
22280oveq2i 5885 . . . . . 6  |-  ( (
-u Q  -  (
2  x.  G ) )  /  ( 2  x.  1 ) )  =  ( ( -u Q  -  ( 2  x.  G ) )  /  2 )
223212, 213oveq12d 5892 . . . . . . 7  |-  ( ph  ->  ( ( -u Q  /  2 )  -  ( ( 2  x.  G )  /  2
) )  =  (
-u N  -  G
) )
224208, 170, 181, 183divsubdird 9591 . . . . . . 7  |-  ( ph  ->  ( ( -u Q  -  ( 2  x.  G ) )  / 
2 )  =  ( ( -u Q  / 
2 )  -  (
( 2  x.  G
)  /  2 ) ) )
22556, 60addcomd 9030 . . . . . . . . 9  |-  ( ph  ->  ( G  +  N
)  =  ( N  +  G ) )
226225negeqd 9062 . . . . . . . 8  |-  ( ph  -> 
-u ( G  +  N )  =  -u ( N  +  G
) )
22760, 56negdi2d 9187 . . . . . . . 8  |-  ( ph  -> 
-u ( N  +  G )  =  (
-u N  -  G
) )
228226, 227eqtrd 2328 . . . . . . 7  |-  ( ph  -> 
-u ( G  +  N )  =  (
-u N  -  G
) )
229223, 224, 2283eqtr4d 2338 . . . . . 6  |-  ( ph  ->  ( ( -u Q  -  ( 2  x.  G ) )  / 
2 )  =  -u ( G  +  N
) )
230222, 229syl5eq 2340 . . . . 5  |-  ( ph  ->  ( ( -u Q  -  ( 2  x.  G ) )  / 
( 2  x.  1 ) )  =  -u ( G  +  N
) )
231230eqeq2d 2307 . . . 4  |-  ( ph  ->  ( ( U ^
3 )  =  ( ( -u Q  -  ( 2  x.  G
) )  /  (
2  x.  1 ) )  <->  ( U ^
3 )  =  -u ( G  +  N
) ) )
232221, 231orbi12d 690 . . 3  |-  ( ph  ->  ( ( ( U ^ 3 )  =  ( ( -u Q  +  ( 2  x.  G ) )  / 
( 2  x.  1 ) )  \/  ( U ^ 3 )  =  ( ( -u Q  -  ( 2  x.  G ) )  / 
( 2  x.  1 ) ) )  <->  ( ( U ^ 3 )  =  ( G  -  N
)  \/  ( U ^ 3 )  = 
-u ( G  +  N ) ) ) )
233206, 232mpbid 201 . 2  |-  ( ph  ->  ( ( U ^
3 )  =  ( G  -  N )  \/  ( U ^
3 )  =  -u ( G  +  N
) ) )
23436, 153, 233mpjaodan 761 1  |-  ( ph  ->  E. r  e.  CC  ( ( r ^
3 )  =  1  /\  X  =  ( ( r  x.  T
)  -  ( M  /  ( r  x.  T ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   class class class wbr 4039  (class class class)co 5874   CCcc 8751   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    - cmin 9053   -ucneg 9054    / cdiv 9439   NNcn 9762   2c2 9811   3c3 9812   4c4 9813   NN0cn0 9981   ZZcz 10040   ^cexp 11120    || cdivides 12547
This theorem is referenced by:  dcubic  20158
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fz 10799  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548
  Copyright terms: Public domain W3C validator