MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dec10 Structured version   Unicode version

Theorem dec10 10412
Description: The decimal form of 10. NB: In our presentations of large numbers later on, we will use our symbol for 10 at the highest digits when advantageous, because we can use this theorem to convert back to "long form" (where each digit is in the range 0-9) with no extra effort. However, we cannot do this for lower digits while maintaining the ease of use of the decimal system, since it requires nontrivial number knowledge (more than just equality theorems) to convert back. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
dec10  |-  10  = ; 1 0

Proof of Theorem dec10
StepHypRef Expression
1 10nn 10141 . . . 4  |-  10  e.  NN
21nncni 10010 . . 3  |-  10  e.  CC
32addid1i 9253 . 2  |-  ( 10  +  0 )  =  10
4 dec10p 10411 . 2  |-  ( 10  +  0 )  = ; 1
0
53, 4eqtr3i 2458 1  |-  10  = ; 1 0
Colors of variables: wff set class
Syntax hints:    = wceq 1652  (class class class)co 6081   0cc0 8990   1c1 8991    + caddc 8993   10c10 10057  ;cdc 10382
This theorem is referenced by:  decaddc2  10425  decaddci2  10428  6p5e11  10432  7p4e11  10434  8p3e11  10438  9p2e11  10444  10p10e20  10452  2exp16  13424  139prm  13446  163prm  13447  317prm  13448  631prm  13449  1259lem1  13450  1259lem2  13451  1259lem3  13452  1259lem4  13453  2503lem1  13456  2503lem2  13457  2503lem3  13458  4001lem1  13460  4001lem3  13462  4001lem4  13463  4001prm  13464  odrngstr  13634  imasvalstr  13675  ipostr  14579  cnfldstr  16705  thlle  16924  log2ublem3  20788  log2ub  20789
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-ltxr 9125  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-dec 10383
  Copyright terms: Public domain W3C validator