MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dec10p Unicode version

Theorem dec10p 10336
Description: Ten plus an integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
dec10p  |-  ( 10  +  A )  = ; 1 A

Proof of Theorem dec10p
StepHypRef Expression
1 df-dec 10308 . 2  |- ; 1 A  =  ( ( 10  x.  1 )  +  A )
2 10nn 10066 . . . . 5  |-  10  e.  NN
32nncni 9935 . . . 4  |-  10  e.  CC
43mulid1i 9018 . . 3  |-  ( 10  x.  1 )  =  10
54oveq1i 6023 . 2  |-  ( ( 10  x.  1 )  +  A )  =  ( 10  +  A
)
61, 5eqtr2i 2401 1  |-  ( 10  +  A )  = ; 1 A
Colors of variables: wff set class
Syntax hints:    = wceq 1649  (class class class)co 6013   1c1 8917    + caddc 8919    x. cmul 8921   10c10 9982  ;cdc 10307
This theorem is referenced by:  dec10  10337  5t3e15  10381  4001lem1  13380  log2ublem3  20648
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rrecex 8988  ax-cnre 8989
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-recs 6562  df-rdg 6597  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-5 9986  df-6 9987  df-7 9988  df-8 9989  df-9 9990  df-10 9991  df-dec 10308
  Copyright terms: Public domain W3C validator