MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dec5dvds Unicode version

Theorem dec5dvds 13176
Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
dec5dvds.1  |-  A  e. 
NN0
dec5dvds.2  |-  B  e.  NN
dec5dvds.3  |-  B  <  5
Assertion
Ref Expression
dec5dvds  |-  -.  5  || ; A B

Proof of Theorem dec5dvds
StepHypRef Expression
1 5nn 9972 . 2  |-  5  e.  NN
2 2nn0 10074 . . 3  |-  2  e.  NN0
3 dec5dvds.1 . . 3  |-  A  e. 
NN0
42, 3nn0mulcli 10094 . 2  |-  ( 2  x.  A )  e. 
NN0
5 dec5dvds.2 . 2  |-  B  e.  NN
61nncni 9846 . . . . . 6  |-  5  e.  CC
7 2cn 9906 . . . . . 6  |-  2  e.  CC
83nn0cni 10069 . . . . . 6  |-  A  e.  CC
96, 7, 8mulassi 8936 . . . . 5  |-  ( ( 5  x.  2 )  x.  A )  =  ( 5  x.  (
2  x.  A ) )
10 5t2e10 9967 . . . . . 6  |-  ( 5  x.  2 )  =  10
1110oveq1i 5955 . . . . 5  |-  ( ( 5  x.  2 )  x.  A )  =  ( 10  x.  A
)
129, 11eqtr3i 2380 . . . 4  |-  ( 5  x.  ( 2  x.  A ) )  =  ( 10  x.  A
)
1312oveq1i 5955 . . 3  |-  ( ( 5  x.  ( 2  x.  A ) )  +  B )  =  ( ( 10  x.  A )  +  B
)
14 df-dec 10217 . . 3  |- ; A B  =  ( ( 10  x.  A
)  +  B )
1513, 14eqtr4i 2381 . 2  |-  ( ( 5  x.  ( 2  x.  A ) )  +  B )  = ; A B
16 dec5dvds.3 . 2  |-  B  <  5
171, 4, 5, 15, 16ndvdsi 12706 1  |-  -.  5  || ; A B
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 1710   class class class wbr 4104  (class class class)co 5945    + caddc 8830    x. cmul 8832    < clt 8957   NNcn 9836   2c2 9885   5c5 9888   10c10 9893   NN0cn0 10057  ;cdc 10216    || cdivides 12628
This theorem is referenced by:  dec5dvds2  13177  43prm  13220  83prm  13221  163prm  13223  631prm  13225
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-sup 7284  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-2 9894  df-3 9895  df-4 9896  df-5 9897  df-6 9898  df-7 9899  df-8 9900  df-9 9901  df-10 9902  df-n0 10058  df-z 10117  df-dec 10217  df-uz 10323  df-rp 10447  df-fz 10875  df-seq 11139  df-exp 11198  df-cj 11680  df-re 11681  df-im 11682  df-sqr 11816  df-abs 11817  df-dvds 12629
  Copyright terms: Public domain W3C validator