MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decaddc Structured version   Unicode version

Theorem decaddc 10462
Description: Add two numerals  M and  N (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
decma.1  |-  A  e. 
NN0
decma.2  |-  B  e. 
NN0
decma.3  |-  C  e. 
NN0
decma.4  |-  D  e. 
NN0
decma.5  |-  M  = ; A B
decma.6  |-  N  = ; C D
decaddc.8  |-  ( ( A  +  C )  +  1 )  =  E
decaddc.7  |-  F  e. 
NN0
decaddc.9  |-  ( B  +  D )  = ; 1 F
Assertion
Ref Expression
decaddc  |-  ( M  +  N )  = ; E F

Proof of Theorem decaddc
StepHypRef Expression
1 10nn0 10284 . . 3  |-  10  e.  NN0
2 decma.1 . . 3  |-  A  e. 
NN0
3 decma.2 . . 3  |-  B  e. 
NN0
4 decma.3 . . 3  |-  C  e. 
NN0
5 decma.4 . . 3  |-  D  e. 
NN0
6 decma.5 . . . 4  |-  M  = ; A B
7 df-dec 10421 . . . 4  |- ; A B  =  ( ( 10  x.  A
)  +  B )
86, 7eqtri 2463 . . 3  |-  M  =  ( ( 10  x.  A )  +  B
)
9 decma.6 . . . 4  |-  N  = ; C D
10 df-dec 10421 . . . 4  |- ; C D  =  ( ( 10  x.  C
)  +  D )
119, 10eqtri 2463 . . 3  |-  N  =  ( ( 10  x.  C )  +  D
)
12 decaddc.7 . . 3  |-  F  e. 
NN0
13 decaddc.8 . . 3  |-  ( ( A  +  C )  +  1 )  =  E
14 decaddc.9 . . . 4  |-  ( B  +  D )  = ; 1 F
15 df-dec 10421 . . . 4  |- ; 1 F  =  ( ( 10  x.  1 )  +  F )
1614, 15eqtri 2463 . . 3  |-  ( B  +  D )  =  ( ( 10  x.  1 )  +  F
)
171, 2, 3, 4, 5, 8, 11, 12, 13, 16numaddc 10455 . 2  |-  ( M  +  N )  =  ( ( 10  x.  E )  +  F
)
18 df-dec 10421 . 2  |- ; E F  =  ( ( 10  x.  E
)  +  F )
1917, 18eqtr4i 2466 1  |-  ( M  +  N )  = ; E F
Colors of variables: wff set class
Syntax hints:    = wceq 1654    e. wcel 1728  (class class class)co 6117   1c1 9029    + caddc 9031    x. cmul 9033   10c10 10095   NN0cn0 10259  ;cdc 10420
This theorem is referenced by:  decaddc2  10463  decaddci  10465  2exp16  13462  prmlem2  13480  37prm  13481  1259lem1  13488  1259lem4  13491  2503lem2  13495  4001lem1  13498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-sep 4361  ax-nul 4369  ax-pow 4412  ax-pr 4438  ax-un 4736  ax-resscn 9085  ax-1cn 9086  ax-icn 9087  ax-addcl 9088  ax-addrcl 9089  ax-mulcl 9090  ax-mulrcl 9091  ax-mulcom 9092  ax-addass 9093  ax-mulass 9094  ax-distr 9095  ax-i2m1 9096  ax-1ne0 9097  ax-1rid 9098  ax-rnegex 9099  ax-rrecex 9100  ax-cnre 9101  ax-pre-lttri 9102  ax-pre-lttrn 9103  ax-pre-ltadd 9104
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2717  df-rex 2718  df-reu 2719  df-rab 2721  df-v 2967  df-sbc 3171  df-csb 3271  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-pss 3325  df-nul 3617  df-if 3768  df-pw 3830  df-sn 3849  df-pr 3850  df-tp 3851  df-op 3852  df-uni 4045  df-iun 4124  df-br 4244  df-opab 4298  df-mpt 4299  df-tr 4334  df-eprel 4529  df-id 4533  df-po 4538  df-so 4539  df-fr 4576  df-we 4578  df-ord 4619  df-on 4620  df-lim 4621  df-suc 4622  df-om 4881  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5453  df-fun 5491  df-fn 5492  df-f 5493  df-f1 5494  df-fo 5495  df-f1o 5496  df-fv 5497  df-ov 6120  df-oprab 6121  df-mpt2 6122  df-riota 6585  df-recs 6669  df-rdg 6704  df-er 6941  df-en 7146  df-dom 7147  df-sdom 7148  df-pnf 9160  df-mnf 9161  df-ltxr 9163  df-sub 9331  df-nn 10039  df-2 10096  df-3 10097  df-4 10098  df-5 10099  df-6 10100  df-7 10101  df-8 10102  df-9 10103  df-10 10104  df-n0 10260  df-dec 10421
  Copyright terms: Public domain W3C validator