MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decaddi Structured version   Unicode version

Theorem decaddi 10427
Description: Add two numerals  M and  N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
decaddi.1  |-  A  e. 
NN0
decaddi.2  |-  B  e. 
NN0
decaddi.3  |-  N  e. 
NN0
decaddi.4  |-  M  = ; A B
decaddi.5  |-  ( B  +  N )  =  C
Assertion
Ref Expression
decaddi  |-  ( M  +  N )  = ; A C

Proof of Theorem decaddi
StepHypRef Expression
1 decaddi.1 . 2  |-  A  e. 
NN0
2 decaddi.2 . 2  |-  B  e. 
NN0
3 0nn0 10237 . 2  |-  0  e.  NN0
4 decaddi.3 . 2  |-  N  e. 
NN0
5 decaddi.4 . 2  |-  M  = ; A B
64dec0h 10399 . 2  |-  N  = ; 0 N
71nn0cni 10234 . . 3  |-  A  e.  CC
87addid1i 9254 . 2  |-  ( A  +  0 )  =  A
9 decaddi.5 . 2  |-  ( B  +  N )  =  C
101, 2, 3, 4, 5, 6, 8, 9decadd 10424 1  |-  ( M  +  N )  = ; A C
Colors of variables: wff set class
Syntax hints:    = wceq 1653    e. wcel 1726  (class class class)co 6082   0cc0 8991    + caddc 8994   NN0cn0 10222  ;cdc 10383
This theorem is referenced by:  4t4e16  10456  6t3e18  10461  7t4e28  10467  7t7e49  10470  2exp16  13425  17prm  13440  23prm  13442  prmlem2  13443  37prm  13444  83prm  13446  139prm  13447  163prm  13448  317prm  13449  631prm  13450  1259lem1  13451  1259lem2  13452  1259lem3  13453  1259lem4  13454  1259lem5  13455  1259prm  13456  2503lem1  13457  2503lem2  13458  2503lem3  13459  4001lem1  13461  4001lem2  13462  4001lem4  13464  4001prm  13465  log2ublem3  20789  log2ub  20790  birthday  20794
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-recs 6634  df-rdg 6669  df-er 6906  df-en 7111  df-dom 7112  df-sdom 7113  df-pnf 9123  df-mnf 9124  df-ltxr 9126  df-nn 10002  df-2 10059  df-3 10060  df-4 10061  df-5 10062  df-6 10063  df-7 10064  df-8 10065  df-9 10066  df-10 10067  df-n0 10223  df-dec 10384
  Copyright terms: Public domain W3C validator